10,16,2021

News Blog Paper China
Comprehensive Attention Self-Distillation for Weakly-Supervised Object Detection2020-10-22   ${\displaystyle \cong }$
Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient objects, clustered objects and discriminative object parts. Moreover, the image-level category labels do not enforce consistent object detection across different transformations of the same images. To address the above issues, we propose a Comprehensive Attention Self-Distillation (CASD) training approach for WSOD. To balance feature learning among all object instances, CASD computes the comprehensive attention aggregated from multiple transformations and feature layers of the same images. To enforce consistent spatial supervision on objects, CASD conducts self-distillation on the WSOD networks, such that the comprehensive attention is approximated simultaneously by multiple transformations and feature layers of the same images. CASD produces new state-of-the-art WSOD results on standard benchmarks such as PASCAL VOC 2007/2012 and MS-COCO.
 
Understanding Object Detection Through An Adversarial Lens2020-07-11   ${\displaystyle \cong }$
Deep neural networks based object detection models have revolutionized computer vision and fueled the development of a wide range of visual recognition applications. However, recent studies have revealed that deep object detectors can be compromised under adversarial attacks, causing a victim detector to detect no object, fake objects, or mislabeled objects. With object detection being used pervasively in many security-critical applications, such as autonomous vehicles and smart cities, we argue that a holistic approach for an in-depth understanding of adversarial attacks and vulnerabilities of deep object detection systems is of utmost importance for the research community to develop robust defense mechanisms. This paper presents a framework for analyzing and evaluating vulnerabilities of the state-of-the-art object detectors under an adversarial lens, aiming to analyze and demystify the attack strategies, adverse effects, and costs, as well as the cross-model and cross-resolution transferability of attacks. Using a set of quantitative metrics, extensive experiments are performed on six representative deep object detectors from three popular families (YOLOv3, SSD, and Faster R-CNN) with two benchmark datasets (PASCAL VOC and MS COCO). We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems. We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
 
Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning2018-02-25   ${\displaystyle \cong }$
Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly supervised curriculum learning pipeline for multi-label object recognition, detection and semantic segmentation. In this pipeline, we first obtain intermediate object localization and pixel labeling results for the training images, and then use such results to train task-specific deep networks in a fully supervised manner. The entire process consists of four stages, including object localization in the training images, filtering and fusing object instances, pixel labeling for the training images, and task-specific network training. To obtain clean object instances in the training images, we propose a novel algorithm for filtering, fusing and classifying object instances collected from multiple solution mechanisms. In this algorithm, we incorporate both metric learning and density-based clustering to filter detected object instances. Experiments show that our weakly supervised pipeline achieves state-of-the-art results in multi-label image classification as well as weakly supervised object detection and very competitive results in weakly supervised semantic segmentation on MS-COCO, PASCAL VOC 2007 and PASCAL VOC 2012.
 
DetectorGuard: Provably Securing Object Detectors against Localized Patch Hiding Attacks2021-02-04   ${\displaystyle \cong }$
State-of-the-art object detectors are vulnerable to localized patch hiding attacks where an adversary introduces a small adversarial patch to make detectors miss the detection of salient objects. In this paper, we propose the first general framework for building provably robust detectors against the localized patch hiding attack called DetectorGuard. To start with, we propose a general approach for transferring the robustness from image classifiers to object detectors, which builds a bridge between robust image classification and robust object detection. We apply a provably robust image classifier to a sliding window over the image and aggregates robust window classifications at different locations for a robust object detection. Second, in order to mitigate the notorious trade-off between clean performance and provable robustness, we use a prediction pipeline in which we compare the outputs of a conventional detector and a robust detector for catching an ongoing attack. When no attack is detected, DetectorGuard outputs the precise bounding boxes predicted by the conventional detector to achieve a high clean performance; otherwise, DetectorGuard triggers an attack alert for security. Notably, our prediction strategy ensures that the robust detector incorrectly missing objects will not hurt the clean performance of DetectorGuard. Moreover, our approach allows us to formally prove the robustness of DetectorGuard on certified objects, i.e., it either detects the object or triggers an alert, against any patch hiding attacker. Our evaluation on the PASCAL VOC and MS COCO datasets shows that DetectorGuard has the almost same clean performance as conventional detectors, and more importantly, that DetectorGuard achieves the first provable robustness against localized patch hiding attacks.
 
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression2019-04-14   ${\displaystyle \cong }$
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
 
Object Contour Detection with a Fully Convolutional Encoder-Decoder Network2016-03-14   ${\displaystyle \cong }$
We develop a deep learning algorithm for contour detection with a fully convolutional encoder-decoder network. Different from previous low-level edge detection, our algorithm focuses on detecting higher-level object contours. Our network is trained end-to-end on PASCAL VOC with refined ground truth from inaccurate polygon annotations, yielding much higher precision in object contour detection than previous methods. We find that the learned model generalizes well to unseen object classes from the same super-categories on MS COCO and can match state-of-the-art edge detection on BSDS500 with fine-tuning. By combining with the multiscale combinatorial grouping algorithm, our method can generate high-quality segmented object proposals, which significantly advance the state-of-the-art on PASCAL VOC (improving average recall from 0.62 to 0.67) with a relatively small amount of candidates ($\sim$1660 per image).
 
Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection2020-07-29   ${\displaystyle \cong }$
Weakly supervised learning has emerged as a compelling tool for object detection by reducing the need for strong supervision during training. However, major challenges remain: (1) differentiation of object instances can be ambiguous; (2) detectors tend to focus on discriminative parts rather than entire objects; (3) without ground truth, object proposals have to be redundant for high recalls, causing significant memory consumption. Addressing these challenges is difficult, as it often requires to eliminate uncertainties and trivial solutions. To target these issues we develop an instance-aware and context-focused unified framework. It employs an instance-aware self-training algorithm and a learnable Concrete DropBlock while devising a memory-efficient sequential batch back-propagation. Our proposed method achieves state-of-the-art results on COCO ($12.1\% ~AP$, $24.8\% ~AP_{50}$), VOC 2007 ($54.9\% ~AP$), and VOC 2012 ($52.1\% ~AP$), improving baselines by great margins. In addition, the proposed method is the first to benchmark ResNet based models and weakly supervised video object detection. Code, models, and more details will be made available at: https://github.com/NVlabs/wetectron.
 
Object detection for crabs in top-view seabed imagery2021-05-01   ${\displaystyle \cong }$
This report presents the application of object detection on a database of underwater images of different species of crabs, as well as aerial images of sea lions and finally the Pascal VOC dataset. The model is an end-to-end object detection neural network based on a convolutional network base and a Long Short-Term Memory detector.
 
RODEO: Replay for Online Object Detection2020-08-14   ${\displaystyle \cong }$
Humans can incrementally learn to do new visual detection tasks, which is a huge challenge for today's computer vision systems. Incrementally trained deep learning models lack backwards transfer to previously seen classes and suffer from a phenomenon known as $"catastrophic forgetting."$ In this paper, we pioneer online streaming learning for object detection, where an agent must learn examples one at a time with severe memory and computational constraints. In object detection, a system must output all bounding boxes for an image with the correct label. Unlike earlier work, the system described in this paper can learn this task in an online manner with new classes being introduced over time. We achieve this capability by using a novel memory replay mechanism that efficiently replays entire scenes. We achieve state-of-the-art results on both the PASCAL VOC 2007 and MS COCO datasets.
 
Incremental Object Detection via Meta-Learning2020-03-17   ${\displaystyle \cong }$
In a real-world setting, object instances from new classes may be continuously encountered by object detectors. When existing object detectors are applied to such scenarios, their performance on old classes deteriorates significantly. A few efforts have been reported to address this limitation, all of which apply variants of knowledge distillation to avoid catastrophic forgetting. We note that although distillation helps to retain previous learning, it obstructs fast adaptability to new tasks, which is a critical requirement for incremental learning. In this pursuit, we propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared. This ensures a seamless information transfer via a meta-learned gradient preconditioning that minimizes forgetting and maximizes knowledge transfer. In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to large-sized models for object detection. We evaluate our approach on a variety of incremental settings defined on PASCAL-VOC and MS COCO datasets, demonstrating significant improvements over state-of-the-art.
 
Consistency-based Active Learning for Object Detection2021-03-18   ${\displaystyle \cong }$
Active learning aims to improve the performance of task model by selecting the most informative samples with a limited budget. Unlike most recent works that focused on applying active learning for image classification, we propose an effective Consistency-based Active Learning method for object Detection (CALD), which fully explores the consistency between original and augmented data. CALD has three appealing benefits. (i) CALD is systematically designed by investigating the weaknesses of existing active learning methods, which do not take the unique challenges of object detection into account. (ii) CALD unifies box regression and classification with a single metric, which is not concerned by active learning methods for classification. CALD also focuses on the most informative local region rather than the whole image, which is beneficial for object detection. (iii) CALD not only gauges individual information for sample selection, but also leverages mutual information to encourage a balanced data distribution. Extensive experiments show that CALD significantly outperforms existing state-of-the-art task-agnostic and detection-specific active learning methods on general object detection datasets. Based on the Faster R-CNN detector, CALD consistently surpasses the baseline method (random selection) by 2.9/2.8/0.8 mAP on average on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO. Code is available at \url{https://github.com/we1pingyu/CALD}
 
Training Region-based Object Detectors with Online Hard Example Mining2016-04-12   ${\displaystyle \cong }$
The field of object detection has made significant advances riding on the wave of region-based ConvNets, but their training procedure still includes many heuristics and hyperparameters that are costly to tune. We present a simple yet surprisingly effective online hard example mining (OHEM) algorithm for training region-based ConvNet detectors. Our motivation is the same as it has always been -- detection datasets contain an overwhelming number of easy examples and a small number of hard examples. Automatic selection of these hard examples can make training more effective and efficient. OHEM is a simple and intuitive algorithm that eliminates several heuristics and hyperparameters in common use. But more importantly, it yields consistent and significant boosts in detection performance on benchmarks like PASCAL VOC 2007 and 2012. Its effectiveness increases as datasets become larger and more difficult, as demonstrated by the results on the MS COCO dataset. Moreover, combined with complementary advances in the field, OHEM leads to state-of-the-art results of 78.9% and 76.3% mAP on PASCAL VOC 2007 and 2012 respectively.
 
One-Shot Object Detection with Co-Attention and Co-Excitation2019-11-28   ${\displaystyle \cong }$
This paper aims to tackle the challenging problem of one-shot object detection. Given a query image patch whose class label is not included in the training data, the goal of the task is to detect all instances of the same class in a target image. To this end, we develop a novel {\em co-attention and co-excitation} (CoAE) framework that makes contributions in three key technical aspects. First, we propose to use the non-local operation to explore the co-attention embodied in each query-target pair and yield region proposals accounting for the one-shot situation. Second, we formulate a squeeze-and-co-excitation scheme that can adaptively emphasize correlated feature channels to help uncover relevant proposals and eventually the target objects. Third, we design a margin-based ranking loss for implicitly learning a metric to predict the similarity of a region proposal to the underlying query, no matter its class label is seen or unseen in training. The resulting model is therefore a two-stage detector that yields a strong baseline on both VOC and MS-COCO under one-shot setting of detecting objects from both seen and never-seen classes. Codes are available at https://github.com/timy90022/One-Shot-Object-Detection.
 
Open-Vocabulary Object Detection Using Captions2020-11-20   ${\displaystyle \cong }$
Despite the remarkable accuracy of deep neural networks in object detection, they are costly to train and scale due to supervision requirements. Particularly, learning more object categories typically requires proportionally more bounding box annotations. Weakly supervised and zero-shot learning techniques have been explored to scale object detectors to more categories with less supervision, but they have not been as successful and widely adopted as supervised models. In this paper, we put forth a novel formulation of the object detection problem, namely open-vocabulary object detection, which is more general, more practical, and more effective than weakly supervised and zero-shot approaches. We propose a new method to train object detectors using bounding box annotations for a limited set of object categories, as well as image-caption pairs that cover a larger variety of objects at a significantly lower cost. We show that the proposed method can detect and localize objects for which no bounding box annotation is provided during training, at a significantly higher accuracy than zero-shot approaches. Meanwhile, objects with bounding box annotation can be detected almost as accurately as supervised methods, which is significantly better than weakly supervised baselines. Accordingly, we establish a new state of the art for scalable object detection.
 
Semi-Supervised Semantic Image Segmentation with Self-correcting Networks2020-02-25   ${\displaystyle \cong }$
Building a large image dataset with high-quality object masks for semantic segmentation is costly and time consuming. In this paper, we introduce a principled semi-supervised framework that only uses a small set of fully supervised images (having semantic segmentation labels and box labels) and a set of images with only object bounding box labels (we call it the weak set). Our framework trains the primary segmentation model with the aid of an ancillary model that generates initial segmentation labels for the weak set and a self-correction module that improves the generated labels during training using the increasingly accurate primary model. We introduce two variants of the self-correction module using either linear or convolutional functions. Experiments on the PASCAL VOC 2012 and Cityscape datasets show that our models trained with a small fully supervised set perform similar to, or better than, models trained with a large fully supervised set while requiring ~7x less annotation effort.
 
Class-agnostic Object Detection2020-11-28   ${\displaystyle \cong }$
Object detection models perform well at localizing and classifying objects that they are shown during training. However, due to the difficulty and cost associated with creating and annotating detection datasets, trained models detect a limited number of object types with unknown objects treated as background content. This hinders the adoption of conventional detectors in real-world applications like large-scale object matching, visual grounding, visual relation prediction, obstacle detection (where it is more important to determine the presence and location of objects than to find specific types), etc. We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes. Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes. The predicted boxes can then be consumed by another system to perform application-specific classification, retrieval, etc. We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain. Finally, we propose (1) baseline methods and (2) a new adversarial learning framework for class-agnostic detection that forces the model to exclude class-specific information from features used for predictions. Experimental results show that adversarial learning improves class-agnostic detection efficacy.
 
SocialGuard: An Adversarial Example Based Privacy-Preserving Technique for Social Images2020-11-27   ${\displaystyle \cong }$
The popularity of various social platforms has prompted more people to share their routine photos online. However, undesirable privacy leakages occur due to such online photo sharing behaviors. Advanced deep neural network (DNN) based object detectors can easily steal users' personal information exposed in shared photos. In this paper, we propose a novel adversarial example based privacy-preserving technique for social images against object detectors based privacy stealing. Specifically, we develop an Object Disappearance Algorithm to craft two kinds of adversarial social images. One can hide all objects in the social images from being detected by an object detector, and the other can make the customized sensitive objects be incorrectly classified by the object detector. The Object Disappearance Algorithm constructs perturbation on a clean social image. After being injected with the perturbation, the social image can easily fool the object detector, while its visual quality will not be degraded. We use two metrics, privacy-preserving success rate and privacy leakage rate, to evaluate the effectiveness of the proposed method. Experimental results show that, the proposed method can effectively protect the privacy of social images. The privacy-preserving success rates of the proposed method on MS-COCO and PASCAL VOC 2007 datasets are high up to 96.1% and 99.3%, respectively, and the privacy leakage rates on these two datasets are as low as 0.57% and 0.07%, respectively. In addition, compared with existing image processing methods (low brightness, noise, blur, mosaic and JPEG compression), the proposed method can achieve much better performance in privacy protection and image visual quality maintenance.
 
Towards Adversarially Robust Object Detection2019-07-24   ${\displaystyle \cong }$
Object detection is an important vision task and has emerged as an indispensable component in many vision system, rendering its robustness as an increasingly important performance factor for practical applications. While object detection models have been demonstrated to be vulnerable against adversarial attacks by many recent works, very few efforts have been devoted to improving their robustness. In this work, we take an initial attempt towards this direction. We first revisit and systematically analyze object detectors and many recently developed attacks from the perspective of model robustness. We then present a multi-task learning perspective of object detection and identify an asymmetric role of task losses. We further develop an adversarial training approach which can leverage the multiple sources of attacks for improving the robustness of detection models. Extensive experiments on PASCAL-VOC and MS-COCO verified the effectiveness of the proposed approach.
 
DSOD: Learning Deeply Supervised Object Detectors from Scratch2018-04-29   ${\displaystyle \cong }$
We present Deeply Supervised Object Detector (DSOD), a framework that can learn object detectors from scratch. State-of-the-art object objectors rely heavily on the off-the-shelf networks pre-trained on large-scale classification datasets like ImageNet, which incurs learning bias due to the difference on both the loss functions and the category distributions between classification and detection tasks. Model fine-tuning for the detection task could alleviate this bias to some extent but not fundamentally. Besides, transferring pre-trained models from classification to detection between discrepant domains is even more difficult (e.g. RGB to depth images). A better solution to tackle these two critical problems is to train object detectors from scratch, which motivates our proposed DSOD. Previous efforts in this direction mostly failed due to much more complicated loss functions and limited training data in object detection. In DSOD, we contribute a set of design principles for training object detectors from scratch. One of the key findings is that deep supervision, enabled by dense layer-wise connections, plays a critical role in learning a good detector. Combining with several other principles, we develop DSOD following the single-shot detection (SSD) framework. Experiments on PASCAL VOC 2007, 2012 and MS COCO datasets demonstrate that DSOD can achieve better results than the state-of-the-art solutions with much more compact models. For instance, DSOD outperforms SSD on all three benchmarks with real-time detection speed, while requires only 1/2 parameters to SSD and 1/10 parameters to Faster RCNN. Our code and models are available at: https://github.com/szq0214/DSOD .
 
SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing2020-04-28   ${\displaystyle \cong }$
Small and cluttered objects are common in real-world which are challenging for detection. The difficulty is further pronounced when the objects are rotated, as traditional detectors often routinely locate the objects in horizontal bounding box such that the region of interest is contaminated with background or nearby interleaved objects. In this paper, we first innovatively introduce the idea of denoising to object detection. Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects. To handle the rotation variation, we also add a novel IoU constant factor to the smooth L1 loss to address the long standing boundary problem, which to our analysis, is mainly caused by the periodicity of angular (PoA) and exchangeability of edges (EoE). By combing these two features, our proposed detector is termed as SCRDet++. Extensive experiments are performed on large aerial images public datasets DOTA, DIOR, UCAS-AOD as well as natural image dataset COCO, scene text dataset ICDAR2015, small traffic light dataset BSTLD and our newly released S$^2$TLD by this paper. The results show the effectiveness of our approach. Project page at https://yangxue0827.github.io/SCRDet++.html.