News Blog Paper China
Failure Prediction in Production Line Based on Federated Learning: An Empirical Study2021-01-25   ${\displaystyle \cong }$
Data protection across organizations is limiting the application of centralized learning (CL) techniques. Federated learning (FL) enables multiple participants to build a learning model without sharing data. Nevertheless, there are very few research works on FL in intelligent manufacturing. This paper presents the results of an empirical study on failure prediction in the production line based on FL. This paper (1) designs Federated Support Vector Machine (FedSVM) and Federated Random Forest (FedRF) algorithms for the horizontal FL and vertical FL scenarios, respectively; (2) proposes an experiment process for evaluating the effectiveness between the FL and CL algorithms; (3) finds that the performance of FL and CL are not significantly different on the global testing data, on the random partial testing data, and on the estimated unknown Bosch data, respectively. The fact that the testing data is heterogeneous enhances our findings. Our study reveals that FL can replace CL for failure prediction.
A Framework for Energy and Carbon Footprint Analysis of Distributed and Federated Edge Learning2021-03-18   ${\displaystyle \cong }$
Recent advances in distributed learning raise environmental concerns due to the large energy needed to train and move data to/from data centers. Novel paradigms, such as federated learning (FL), are suitable for decentralized model training across devices or silos that simultaneously act as both data producers and learners. Unlike centralized learning (CL) techniques, relying on big-data fusion and analytics located in energy hungry data centers, in FL scenarios devices collaboratively train their models without sharing their private data. This article breaks down and analyzes the main factors that influence the environmental footprint of FL policies compared with classical CL/Big-Data algorithms running in data centers. The proposed analytical framework takes into account both learning and communication energy costs, as well as the carbon equivalent emissions; in addition, it models both vanilla and decentralized FL policies driven by consensus. The framework is evaluated in an industrial setting assuming a real-world robotized workplace. Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency (50 kbit/Joule or lower). Consensus-driven FL does not require the parameter server and further reduces emissions in mesh networks (200 kbit/Joule). On the other hand, all FL policies are slower to converge when local data are unevenly distributed (often 2x slower than CL). Energy footprint and learning loss can be traded off to optimize efficiency.
A Systematic Literature Review on Federated Learning: From A Model Quality Perspective2020-12-01   ${\displaystyle \cong }$
As an emerging technique, Federated Learning (FL) can jointly train a global model with the data remaining locally, which effectively solves the problem of data privacy protection through the encryption mechanism. The clients train their local model, and the server aggregates models until convergence. In this process, the server uses an incentive mechanism to encourage clients to contribute high-quality and large-volume data to improve the global model. Although some works have applied FL to the Internet of Things (IoT), medicine, manufacturing, etc., the application of FL is still in its infancy, and many related issues need to be solved. Improving the quality of FL models is one of the current research hotspots and challenging tasks. This paper systematically reviews and objectively analyzes the approaches to improving the quality of FL models. We are also interested in the research and application trends of FL and the effect comparison between FL and non-FL because the practitioners usually worry that achieving privacy protection needs compromising learning quality. We use a systematic review method to analyze 147 latest articles related to FL. This review provides useful information and insights to both academia and practitioners from the industry. We investigate research questions about academic research and industrial application trends of FL, essential factors affecting the quality of FL models, and compare FL and non-FL algorithms in terms of learning quality. Based on our review's conclusion, we give some suggestions for improving the FL model quality. Finally, we propose an FL application framework for practitioners.
On-device Federated Learning with Flower2021-04-07   ${\displaystyle \cong }$
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite the algorithmic advancements in FL, the support for on-device training of FL algorithms on edge devices remains poor. In this paper, we present an exploration of on-device FL on various smartphones and embedded devices using the Flower framework. We also evaluate the system costs of on-device FL and discuss how this quantification could be used to design more efficient FL algorithms.
A Survey on Federated Learning and its Applications for Accelerating Industrial Internet of Things2021-04-21   ${\displaystyle \cong }$
Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.
A Joint Learning and Communications Framework for Federated Learning over Wireless Networks2020-06-08   ${\displaystyle \cong }$
In this paper, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In particular, in the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that will generate a global FL model and send it back to the users. Since all training parameters are transmitted over wireless links, the quality of the training will be affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS must select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To address this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can reduce the FL loss function value by up to 10% and 16%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation and 2) a standard FL algorithm with random user selection and resource allocation.
Hybrid FL: Algorithms and Implementation2020-12-22   ${\displaystyle \cong }$
Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets. Based on the data partition pattern, FL is often categorized into horizontal, vertical, and hybrid settings. Despite the fact that many works have been developed for the first two approaches, the hybrid FL setting (which deals with partially overlapped feature space and sample space) remains less explored, though this setting is extremely important in practice. In this paper, we first set up a new model-matching-based problem formulation for hybrid FL, then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data. We conduct numerical experiments on the multi-view ModelNet40 data set to validate the performance of the proposed algorithm. To the best of our knowledge, this is the first formulation and algorithm developed for the hybrid FL.
Inverse Distance Aggregation for Federated Learning with Non-IID Data2020-08-17   ${\displaystyle \cong }$
Federated learning (FL) has been a promising approach in the field of medical imaging in recent years. A critical problem in FL, specifically in medical scenarios is to have a more accurate shared model which is robust to noisy and out-of distribution clients. In this work, we tackle the problem of statistical heterogeneity in data for FL which is highly plausible in medical data where for example the data comes from different sites with different scanner settings. We propose IDA (Inverse Distance Aggregation), a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data. We extensively analyze and evaluate our method against the well-known FL approach, Federated Averaging as a baseline.
Improving Accuracy of Federated Learning in Non-IID Settings2020-10-14   ${\displaystyle \cong }$
Federated Learning (FL) is a decentralized machine learning protocol that allows a set of participating agents to collaboratively train a model without sharing their data. This makes FL particularly suitable for settings where data privacy is desired. However, it has been observed that the performance of FL is closely tied with the local data distributions of agents. Particularly, in settings where local data distributions vastly differ among agents, FL performs rather poorly with respect to the centralized training. To address this problem, we hypothesize the reasons behind the performance degradation, and develop some techniques to address these reasons accordingly. In this work, we identify four simple techniques that can improve the performance of trained models without incurring any additional communication overhead to FL, but rather, some light computation overhead either on the client, or the server-side. In our experimental analysis, combination of our techniques improved the validation accuracy of a model trained via FL by more than 12% with respect to our baseline. This is about 5% less than the accuracy of the model trained on centralized data.
Threats to Federated Learning: A Survey2020-03-04   ${\displaystyle \cong }$
With the emergence of data silos and popular privacy awareness, the traditional centralized approach of training artificial intelligence (AI) models is facing strong challenges. Federated learning (FL) has recently emerged as a promising solution under this new reality. Existing FL protocol design has been shown to exhibit vulnerabilities which can be exploited by adversaries both within and without the system to compromise data privacy. It is thus of paramount importance to make FL system designers to be aware of the implications of future FL algorithm design on privacy-preservation. Currently, there is no survey on this topic. In this paper, we bridge this important gap in FL literature. By providing a concise introduction to the concept of FL, and a unique taxonomy covering threat models and two major attacks on FL: 1) poisoning attacks and 2) inference attacks, this paper provides an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks, and discuss promising future research directions towards more robust privacy preservation in FL.
Convergence Time Optimization for Federated Learning over Wireless Networks2020-01-21   ${\displaystyle \cong }$
In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.
A first look into the carbon footprint of federated learning2021-02-15   ${\displaystyle \cong }$
Despite impressive results, deep learning-based technologies also raise severe privacy and environmental concerns induced by the training procedure often conducted in datacenters. In response, alternatives to centralized training such as Federated Learning (FL) have emerged. Perhaps unexpectedly, FL, in particular, is starting to be deployed at a global scale by companies that must adhere to new legal demands and policies originating from governments and civil society for privacy protection. However, the potential environmental impact related to FL remains unclear and unexplored. This paper offers the first-ever systematic study of the carbon footprint of FL. First, we propose a rigorous model to quantify the carbon footprint, hence facilitating the investigation of the relationship between FL design and carbon emissions. Then, we compare the carbon footprint of FL to traditional centralized learning. Our findings show that FL, despite being slower to converge in some cases, may result in a comparatively greener impact than a centralized equivalent setup. We performed extensive experiments across different types of datasets, settings, and various deep learning models with FL. Finally, we highlight and connect the reported results to the future challenges and trends in FL to reduce its environmental impact, including algorithms efficiency, hardware capabilities, and stronger industry transparency.
VAFL: a Method of Vertical Asynchronous Federated Learning2020-07-12   ${\displaystyle \cong }$
Horizontal Federated learning (FL) handles multi-client data that share the same set of features, and vertical FL trains a better predictor that combine all the features from different clients. This paper targets solving vertical FL in an asynchronous fashion, and develops a simple FL method. The new method allows each client to run stochastic gradient algorithms without coordination with other clients, so it is suitable for intermittent connectivity of clients. This method further uses a new technique of perturbed local embedding to ensure data privacy and improve communication efficiency. Theoretically, we present the convergence rate and privacy level of our method for strongly convex, nonconvex and even nonsmooth objectives separately. Empirically, we apply our method to FL on various image and healthcare datasets. The results compare favorably to centralized and synchronous FL methods.
Delay Minimization for Federated Learning Over Wireless Communication Networks2020-07-05   ${\displaystyle \cong }$
In this paper, the problem of delay minimization for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model parameters to a base station (BS) which aggregates the local FL models and broadcasts the aggregated FL model back to all the users. Since FL involves learning model exchanges between the users and the BS, both computation and communication latencies are determined by the required learning accuracy level, which affects the convergence rate of the FL algorithm. This joint learning and communication problem is formulated as a delay minimization problem, where it is proved that the objective function is a convex function of the learning accuracy. Then, a bisection search algorithm is proposed to obtain the optimal solution. Simulation results show that the proposed algorithm can reduce delay by up to 27.3% compared to conventional FL methods.
On the Impact of Device and Behavioral Heterogeneity in Federated Learning2021-02-15   ${\displaystyle \cong }$
Federated learning (FL) is becoming a popular paradigm for collaborative learning over distributed, private datasets owned by non-trusting entities. FL has seen successful deployment in production environments, and it has been adopted in services such as virtual keyboards, auto-completion, item recommendation, and several IoT applications. However, FL comes with the challenge of performing training over largely heterogeneous datasets, devices, and networks that are out of the control of the centralized FL server. Motivated by this inherent setting, we make a first step towards characterizing the impact of device and behavioral heterogeneity on the trained model. We conduct an extensive empirical study spanning close to 1.5K unique configurations on five popular FL benchmarks. Our analysis shows that these sources of heterogeneity have a major impact on both model performance and fairness, thus sheds light on the importance of considering heterogeneity in FL system design.
Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data2021-02-11   ${\displaystyle \cong }$
Many application scenarios call for training a machine learning model among multiple participants. Federated learning (FL) was proposed to enable joint training of a deep learning model using the local data in each party without revealing the data to others. Among various types of FL methods, vertical FL is a category to handle data sources with the same ID space and different feature spaces. However, existing vertical FL methods suffer from limitations such as restrictive neural network structure, slow training speed, and often lack the ability to take advantage of data with unmatched IDs. In this work, we propose an FL method called self-taught federated learning to address the aforementioned issues, which uses unsupervised feature extraction techniques for distributed supervised deep learning tasks. In this method, only latent variables are transmitted to other parties for model training, while privacy is preserved by storing the data and parameters of activations, weights, and biases locally. Extensive experiments are performed to evaluate and demonstrate the validity and efficiency of the proposed method.
Robust Blockchained Federated Learning with Model Validation and Proof-of-Stake Inspired Consensus2021-01-09   ${\displaystyle \cong }$
Federated learning (FL) is a promising distributed learning solution that only exchanges model parameters without revealing raw data. However, the centralized architecture of FL is vulnerable to the single point of failure. In addition, FL does not examine the legitimacy of local models, so even a small fraction of malicious devices can disrupt global training. To resolve these robustness issues of FL, in this paper, we propose a blockchain-based decentralized FL framework, termed VBFL, by exploiting two mechanisms in a blockchained architecture. First, we introduced a novel decentralized validation mechanism such that the legitimacy of local model updates is examined by individual validators. Second, we designed a dedicated proof-of-stake consensus mechanism where stake is more frequently rewarded to honest devices, which protects the legitimate local model updates by increasing their chances of dictating the blocks appended to the blockchain. Together, these solutions promote more federation within legitimate devices, enabling robust FL. Our emulation results of the MNIST classification corroborate that with 15% of malicious devices, VBFL achieves 87% accuracy, which is 7.4x higher than Vanilla FL.
Towards Personalized Federated Learning2021-02-28   ${\displaystyle \cong }$
As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face data distribution and device capability heterogeneity across data owners. This has stimulated the rapid development of Personalized FL (PFL). In this paper, we complement existing surveys, which largely focus on the methods and applications of FL, with a review of recent advances in PFL. We discuss hurdles to PFL under the current FL settings, and present a unique taxonomy dividing PFL techniques into data-based and model-based approaches. We highlight their key ideas, and envision promising future trajectories of research towards new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
Heterogeneity-Aware Federated Learning2020-06-12   ${\displaystyle \cong }$
Federated learning (FL) is an emerging distributed machine learning paradigm that stands out with its inherent privacy-preserving advantages. Heterogeneity is one of the core challenges in FL, which resides in the diverse user behaviors and hardware capacity across devices who participate in the training. Heterogeneity inherently exerts a huge influence on the FL training process, e.g., causing device unavailability. However, existing FL literature usually ignores the impacts of heterogeneity. To fill in the knowledge gap, we build FLASH, the first heterogeneity-aware FL platform. Based on FLASH and a large-scale user trace from 136k real-world users, we demonstrate the usefulness of FLASH in anatomizing the impacts of heterogeneity in FL by exploring three previously unaddressed research questions: whether and how can heterogeneity affect FL performance; how to configure a heterogeneity-aware FL system; and what are heterogeneity's impacts on existing FL optimizations. It shows that heterogeneity causes nontrivial performance degradation in FL from various aspects, and even invalidates some typical FL optimizations.
Reliability and Performance Assessment of Federated Learning on Clinical Benchmark Data2020-05-24   ${\displaystyle \cong }$
As deep learning have been applied in a clinical context, privacy concerns have increased because of the collection and processing of a large amount of personal data. Recently, federated learning (FL) has been suggested to protect personal privacy because it does not centralize data during the training phase. In this study, we assessed the reliability and performance of FL on benchmark datasets including MNIST and MIMIC-III. In addition, we attempted to verify FL on datasets that simulated a realistic clinical data distribution. We implemented FL that uses a client and server architecture and tested client and server FL on modified MNIST and MIMIC-III datasets. FL delivered reliable performance on both imbalanced and extremely skewed distributions (i.e., the difference of the number of patients and the characteristics of patients in each hospital). Therefore, FL can be suitable to protect privacy when applied to medical data.