News Blog Paper China
Provably Convergent Algorithms for Solving Inverse Problems Using Generative Models2021-05-13   ${\displaystyle \cong }$
The traditional approach of hand-crafting priors (such as sparsity) for solving inverse problems is slowly being replaced by the use of richer learned priors (such as those modeled by deep generative networks). In this work, we study the algorithmic aspects of such a learning-based approach from a theoretical perspective. For certain generative network architectures, we establish a simple non-convex algorithmic approach that (a) theoretically enjoys linear convergence guarantees for certain linear and nonlinear inverse problems, and (b) empirically improves upon conventional techniques such as back-propagation. We support our claims with the experimental results for solving various inverse problems. We also propose an extension of our approach that can handle model mismatch (i.e., situations where the generative network prior is not exactly applicable). Together, our contributions serve as building blocks towards a principled use of generative models in inverse problems with more complete algorithmic understanding.
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and Paradigms2020-07-26   ${\displaystyle \cong }$
The linear inverse problem is fundamental to the development of various scientific areas. Innumerable attempts have been carried out to solve different variants of the linear inverse problem in different applications. Nowadays, the rapid development of deep learning provides a fresh perspective for solving the linear inverse problem, which has various well-designed network architectures results in state-of-the-art performance in many applications. In this paper, we present a comprehensive survey of the recent progress in the development of deep learning for solving various linear inverse problems. We review how deep learning methods are used in solving different linear inverse problems, and explore the structured neural network architectures that incorporate knowledge used in traditional methods. Furthermore, we identify open challenges and potential future directions along this research line.
Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors2020-03-27   ${\displaystyle \cong }$
Deep neural networks as image priors have been recently introduced for problems such as denoising, super-resolution and inpainting with promising performance gains over hand-crafted image priors such as sparsity and low-rank. Unlike learned generative priors they do not require any training over large datasets. However, few theoretical guarantees exist in the scope of using untrained neural network priors for inverse imaging problems. We explore new applications and theory for untrained neural network priors. Specifically, we consider the problem of solving linear inverse problems, such as compressive sensing, as well as non-linear problems, such as compressive phase retrieval. We model images to lie in the range of an untrained deep generative network with a fixed seed. We further present a projected gradient descent scheme that can be used for both compressive sensing and phase retrieval and provide rigorous theoretical guarantees for its convergence. We also show both theoretically as well as empirically that with deep network priors, one can achieve better compression rates for the same image quality compared to hand crafted priors.
Solving Inverse Computational Imaging Problems using Deep Pixel-level Prior2018-04-23   ${\displaystyle \cong }$
Signal reconstruction is a challenging aspect of computational imaging as it often involves solving ill-posed inverse problems. Recently, deep feed-forward neural networks have led to state-of-the-art results in solving various inverse imaging problems. However, being task specific, these networks have to be learned for each inverse problem. On the other hand, a more flexible approach would be to learn a deep generative model once and then use it as a signal prior for solving various inverse problems. We show that among the various state of the art deep generative models, autoregressive models are especially suitable for our purpose for the following reasons. First, they explicitly model the pixel level dependencies and hence are capable of reconstructing low-level details such as texture patterns and edges better. Second, they provide an explicit expression for the image prior which can then be used for MAP based inference along with the forward model. Third, they can model long range dependencies in images which make them ideal for handling global multiplexing as encountered in various compressive imaging systems. We demonstrate the efficacy of our proposed approach in solving three computational imaging problems: Single Pixel Camera (SPC), LiSens and FlatCam. For both real and simulated cases, we obtain better reconstructions than the state-of-the-art methods in terms of perceptual and quantitative metrics.
Compressive Phase Retrieval: Optimal Sample Complexity with Deep Generative Priors2020-08-24   ${\displaystyle \cong }$
Advances in compressive sensing provided reconstruction algorithms of sparse signals from linear measurements with optimal sample complexity, but natural extensions of this methodology to nonlinear inverse problems have been met with potentially fundamental sample complexity bottlenecks. In particular, tractable algorithms for compressive phase retrieval with sparsity priors have not been able to achieve optimal sample complexity. This has created an open problem in compressive phase retrieval: under generic, phaseless linear measurements, are there tractable reconstruction algorithms that succeed with optimal sample complexity? Meanwhile, progress in machine learning has led to the development of new data-driven signal priors in the form of generative models, which can outperform sparsity priors with significantly fewer measurements. In this work, we resolve the open problem in compressive phase retrieval and demonstrate that generative priors can lead to a fundamental advance by permitting optimal sample complexity by a tractable algorithm in this challenging nonlinear inverse problem. We additionally provide empirics showing that exploiting generative priors in phase retrieval can significantly outperform sparsity priors. These results provide support for generative priors as a new paradigm for signal recovery in a variety of contexts, both empirically and theoretically. The strengths of this paradigm are that (1) generative priors can represent some classes of natural signals more concisely than sparsity priors, (2) generative priors allow for direct optimization over the natural signal manifold, which is intractable under sparsity priors, and (3) the resulting non-convex optimization problems with generative priors can admit benign optimization landscapes at optimal sample complexity, perhaps surprisingly, even in cases of nonlinear measurements.
Adversarial Regularizers in Inverse Problems2019-01-11   ${\displaystyle \cong }$
Inverse Problems in medical imaging and computer vision are traditionally solved using purely model-based methods. Among those variational regularization models are one of the most popular approaches. We propose a new framework for applying data-driven approaches to inverse problems, using a neural network as a regularization functional. The network learns to discriminate between the distribution of ground truth images and the distribution of unregularized reconstructions. Once trained, the network is applied to the inverse problem by solving the corresponding variational problem. Unlike other data-based approaches for inverse problems, the algorithm can be applied even if only unsupervised training data is available. Experiments demonstrate the potential of the framework for denoising on the BSDS dataset and for computed tomography reconstruction on the LIDC dataset.
Low Shot Learning with Untrained Neural Networks for Imaging Inverse Problems2019-10-23   ${\displaystyle \cong }$
Employing deep neural networks as natural image priors to solve inverse problems either requires large amounts of data to sufficiently train expressive generative models or can succeed with no data via untrained neural networks. However, very few works have considered how to interpolate between these no- to high-data regimes. In particular, how can one use the availability of a small amount of data (even $5-25$ examples) to one's advantage in solving these inverse problems and can a system's performance increase as the amount of data increases as well? In this work, we consider solving linear inverse problems when given a small number of examples of images that are drawn from the same distribution as the image of interest. Comparing to untrained neural networks that use no data, we show how one can pre-train a neural network with a few given examples to improve reconstruction results in compressed sensing and semantic image recovery problems such as colorization. Our approach leads to improved reconstruction as the amount of available data increases and is on par with fully trained generative models, while requiring less than $1 \%$ of the data needed to train a generative model.
Regularization of Inverse Problems by Neural Networks2020-06-06   ${\displaystyle \cong }$
Inverse problems arise in a variety of imaging applications including computed tomography, non-destructive testing, and remote sensing. The characteristic features of inverse problems are the non-uniqueness and instability of their solutions. Therefore, any reasonable solution method requires the use of regularization tools that select specific solutions and at the same time stabilize the inversion process. Recently, data-driven methods using deep learning techniques and neural networks demonstrated to significantly outperform classical solution methods for inverse problems. In this chapter, we give an overview of inverse problems and demonstrate the necessity of regularization concepts for their solution. We show that neural networks can be used for the data-driven solution of inverse problems and review existing deep learning methods for inverse problems. In particular, we view these deep learning methods from the perspective of regularization theory, the mathematical foundation of stable solution methods for inverse problems. This chapter is more than just a review as many of the presented theoretical results extend existing ones.
Globally Injective ReLU Networks2020-06-15   ${\displaystyle \cong }$
We study injective ReLU neural networks. Injectivity plays an important role in generative models where it facilitates inference; in inverse problems with generative priors it is a precursor to well posedness. We establish sharp conditions for injectivity of ReLU layers and networks, both fully connected and convolutional. We make no architectural assumptions beyond the ReLU activations so our results apply to a very general class of neural networks. We show through a layer-wise analysis that an expansivity factor of two is necessary for injectivity; we also show sufficiency by constructing weight matrices which guarantee injectivity. Further, we show that global injectivity with iid Gaussian matrices, a commonly used tractable model, requires considerably larger expansivity which might seem counterintuitive. We then derive the inverse Lipschitz constants and study the approximation-theoretic properties of injective neural networks. Using arguments from differential topology we prove that, under mild technical conditions, any Lipschitz map can be approximated by an injective neural network. This justifies the use of injective neural networks in problems which a priori do not require injectivity. Our results establish a theoretical basis for the study of nonlinear inverse and inference problems using neural networks.
Exact priors of finite neural networks2021-04-23   ${\displaystyle \cong }$
Bayesian neural networks are theoretically well-understood only in the infinite-width limit, where Gaussian priors over network weights yield Gaussian priors over network outputs. Recent work has suggested that finite Bayesian networks may outperform their infinite counterparts, but their non-Gaussian output priors have been characterized only though perturbative approaches. Here, we derive exact solutions for the output priors for individual input examples of a class of finite fully-connected feedforward Bayesian neural networks. For deep linear networks, the prior has a simple expression in terms of the Meijer $G$-function. The prior of a finite ReLU network is a mixture of the priors of linear networks of smaller widths, corresponding to different numbers of active units in each layer. Our results unify previous descriptions of finite network priors in terms of their tail decay and large-width behavior.
NETT: Solving Inverse Problems with Deep Neural Networks2019-12-08   ${\displaystyle \cong }$
Recovering a function or high-dimensional parameter vector from indirect measurements is a central task in various scientific areas. Several methods for solving such inverse problems are well developed and well understood. Recently, novel algorithms using deep learning and neural networks for inverse problems appeared. While still in their infancy, these techniques show astonishing performance for applications like low-dose CT or various sparse data problems. However, there are few theoretical results for deep learning in inverse problems. In this paper, we establish a complete convergence analysis for the proposed NETT (Network Tikhonov) approach to inverse problems. NETT considers data consistent solutions having small value of a regularizer defined by a trained neural network. We derive well-posedness results and quantitative error estimates, and propose a possible strategy for training the regularizer. Our theoretical results and framework are different from any previous work using neural networks for solving inverse problems. A possible data driven regularizer is proposed. Numerical results are presented for a tomographic sparse data problem, which demonstrate good performance of NETT even for unknowns of different type from the training data. To derive the convergence and convergence rates results we introduce a new framework based on the absolute Bregman distance generalizing the standard Bregman distance from the convex to the non-convex case.
Numerical Solution of Inverse Problems by Weak Adversarial Networks2020-02-26   ${\displaystyle \cong }$
We consider a weak adversarial network approach to numerically solve a class of inverse problems, including electrical impedance tomography and dynamic electrical impedance tomography problems. We leverage the weak formulation of PDE in the given inverse problem, and parameterize the solution and the test function as deep neural networks. The weak formulation and the boundary conditions induce a minimax problem of a saddle function of the network parameters. As the parameters are alternatively updated, the network gradually approximates the solution of the inverse problem. We provide theoretical justifications on the convergence of the proposed algorithm. Our method is completely mesh-free without any spatial discretization, and is particularly suitable for problems with high dimensionality and low regularity on solutions. Numerical experiments on a variety of test inverse problems demonstrate the promising accuracy and efficiency of our approach.
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems2020-11-16   ${\displaystyle \cong }$
Deep neural networks have proven extremely efficient at solving a wide rangeof inverse problems, but most often the uncertainty on the solution they provideis hard to quantify. In this work, we propose a generic Bayesian framework forsolving inverse problems, in which we limit the use of deep neural networks tolearning a prior distribution on the signals to recover. We adopt recent denoisingscore matching techniques to learn this prior from data, and subsequently use it aspart of an annealed Hamiltonian Monte-Carlo scheme to sample the full posteriorof image inverse problems. We apply this framework to Magnetic ResonanceImage (MRI) reconstruction and illustrate how this approach not only yields highquality reconstructions but can also be used to assess the uncertainty on particularfeatures of a reconstructed image.
Solving Inverse Problems by Joint Posterior Maximization with a VAE Prior2019-11-14   ${\displaystyle \cong }$
In this paper we address the problem of solving ill-posed inverse problems in imaging where the prior is a neural generative model. Specifically we consider the decoupled case where the prior is trained once and can be reused for many different log-concave degradation models without retraining. Whereas previous MAP-based approaches to this problem lead to highly non-convex optimization algorithms, our approach computes the joint (space-latent) MAP that naturally leads to alternate optimization algorithms and to the use of a stochastic encoder to accelerate computations. The resulting technique is called JPMAP because it performs Joint Posterior Maximization using an Autoencoding Prior. We show theoretical and experimental evidence that the proposed objective function is quite close to bi-convex. Indeed it satisfies a weak bi-convexity property which is sufficient to guarantee that our optimization scheme converges to a stationary point. Experimental results also show the higher quality of the solutions obtained by our JPMAP approach with respect to other non-convex MAP approaches which more often get stuck in spurious local optima.
Joint learning of variational representations and solvers for inverse problems with partially-observed data2020-06-05   ${\displaystyle \cong }$
Designing appropriate variational regularization schemes is a crucial part of solving inverse problems, making them better-posed and guaranteeing that the solution of the associated optimization problem satisfies desirable properties. Recently, learning-based strategies have appeared to be very efficient for solving inverse problems, by learning direct inversion schemes or plug-and-play regularizers from available pairs of true states and observations. In this paper, we go a step further and design an end-to-end framework allowing to learn actual variational frameworks for inverse problems in such a supervised setting. The variational cost and the gradient-based solver are both stated as neural networks using automatic differentiation for the latter. We can jointly learn both components to minimize the data reconstruction error on the true states. This leads to a data-driven discovery of variational models. We consider an application to inverse problems with incomplete datasets (image inpainting and multivariate time series interpolation). We experimentally illustrate that this framework can lead to a significant gain in terms of reconstruction performance, including w.r.t. the direct minimization of the variational formulation derived from the known generative model.
Solving Inverse Wave Scattering with Deep Learning2019-11-27   ${\displaystyle \cong }$
This paper proposes a neural network approach for solving two classical problems in the two-dimensional inverse wave scattering: far field pattern problem and seismic imaging. The mathematical problem of inverse wave scattering is to recover the scatterer field of a medium based on the boundary measurement of the scattered wave from the medium, which is high-dimensional and nonlinear. For the far field pattern problem under the circular experimental setup, a perturbative analysis shows that the forward map can be approximated by a vectorized convolution operator in the angular direction. Motivated by this and filtered back-projection, we propose an effective neural network architecture for the inverse map using the recently introduced BCR-Net along with the standard convolution layers. Analogously for the seismic imaging problem, we propose a similar neural network architecture under the rectangular domain setup with a depth-dependent background velocity. Numerical results demonstrate the efficiency of the proposed neural networks.
Task adapted reconstruction for inverse problems2018-08-27   ${\displaystyle \cong }$
The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation.
Robust priors for regularized regression2020-10-06   ${\displaystyle \cong }$
Induction benefits from useful priors. Penalized regression approaches, like ridge regression, shrink weights toward zero but zero association is usually not a sensible prior. Inspired by simple and robust decision heuristics humans use, we constructed non-zero priors for penalized regression models that provide robust and interpretable solutions across several tasks. Our approach enables estimates from a constrained model to serve as a prior for a more general model, yielding a principled way to interpolate between models of differing complexity. We successfully applied this approach to a number of decision and classification problems, as well as analyzing simulated brain imaging data. Models with robust priors had excellent worst-case performance. Solutions followed from the form of the heuristic that was used to derive the prior. These new algorithms can serve applications in data analysis and machine learning, as well as help in understanding how people transition from novice to expert performance.
Benchmarking deep inverse models over time, and the neural-adjoint method2020-09-27   ${\displaystyle \cong }$
We consider the task of solving generic inverse problems, where one wishes to determine the hidden parameters of a natural system that will give rise to a particular set of measurements. Recently many new approaches based upon deep learning have arisen generating impressive results. We conceptualize these models as different schemes for efficiently, but randomly, exploring the space of possible inverse solutions. As a result, the accuracy of each approach should be evaluated as a function of time rather than a single estimated solution, as is often done now. Using this metric, we compare several state-of-the-art inverse modeling approaches on four benchmark tasks: two existing tasks, one simple task for visualization and one new task from metamaterial design. Finally, inspired by our conception of the inverse problem, we explore a solution that uses a deep learning model to approximate the forward model, and then uses backpropagation to search for good inverse solutions. This approach, termed the neural-adjoint, achieves the best performance in many scenarios.
Reducing the Representation Error of GAN Image Priors Using the Deep Decoder2020-01-23   ${\displaystyle \cong }$
Generative models, such as GANs, learn an explicit low-dimensional representation of a particular class of images, and so they may be used as natural image priors for solving inverse problems such as image restoration and compressive sensing. GAN priors have demonstrated impressive performance on these tasks, but they can exhibit substantial representation error for both in-distribution and out-of-distribution images, because of the mismatch between the learned, approximate image distribution and the data generating distribution. In this paper, we demonstrate a method for reducing the representation error of GAN priors by modeling images as the linear combination of a GAN prior with a Deep Decoder. The deep decoder is an underparameterized and most importantly unlearned natural signal model similar to the Deep Image Prior. No knowledge of the specific inverse problem is needed in the training of the GAN underlying our method. For compressive sensing and image superresolution, our hybrid model exhibits consistently higher PSNRs than both the GAN priors and Deep Decoder separately, both on in-distribution and out-of-distribution images. This model provides a method for extensibly and cheaply leveraging both the benefits of learned and unlearned image recovery priors in inverse problems.