News Blog Paper China
Paying Attention to Astronomical Transients: Photometric Classification with the Time-Series Transformer2021-05-13   ${\displaystyle \cong }$
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a weighted logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks2020-07-31   ${\displaystyle \cong }$
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success is the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We outline four families of time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods, and detail their taxonomy. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with 6 different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
Multi-Faceted Representation Learning with Hybrid Architecture for Time Series Classification2020-12-21   ${\displaystyle \cong }$
Time series classification problems exist in many fields and have been explored for a couple of decades. However, they still remain challenging, and their solutions need to be further improved for real-world applications in terms of both accuracy and efficiency. In this paper, we propose a hybrid neural architecture, called Self-Attentive Recurrent Convolutional Networks (SARCoN), to learn multi-faceted representations for univariate time series. SARCoN is the synthesis of long short-term memory networks with self-attentive mechanisms and Fully Convolutional Networks, which work in parallel to learn the representations of univariate time series from different perspectives. The component modules of the proposed architecture are trained jointly in an end-to-end manner and they classify the input time series in a cooperative way. Due to its domain-agnostic nature, SARCoN is able to generalize a diversity of domain tasks. Our experimental results show that, compared to the state-of-the-art approaches for time series classification, the proposed architecture can achieve remarkable improvements for a set of univariate time series benchmarks from the UCR repository. Moreover, the self-attention and the global average pooling in the proposed architecture enable visible interpretability by facilitating the identification of the contribution regions of the original time series. An overall analysis confirms that multi-faceted representations of time series aid in capturing deep temporal corrections within complex time series, which is essential for the improvement of time series classification performance. Our work provides a novel angle that deepens the understanding of time series classification, qualifying our proposed model as an ideal choice for real-world applications.
catch22: CAnonical Time-series CHaracteristics2019-01-30   ${\displaystyle \cong }$
Capturing the dynamical properties of time series concisely as interpretable feature vectors can enable efficient clustering and classification for time-series applications across science and industry. Selecting an appropriate feature-based representation of time series for a given application can be achieved through systematic comparison across a comprehensive time-series feature library, such as those in the hctsa toolbox. However, this approach is computationally expensive and involves evaluating many similar features, limiting the widespread adoption of feature-based representations of time series for real-world applications. In this work, we introduce a method to infer small sets of time-series features that (i) exhibit strong classification performance across a given collection of time-series problems, and (ii) are minimally redundant. Applying our method to a set of 93 time-series classification datasets (containing over 147000 time series) and using a filtered version of the hctsa feature library (4791 features), we introduce a generically useful set of 22 CAnonical Time-series CHaracteristics, catch22. This dimensionality reduction, from 4791 to 22, is associated with an approximately 1000-fold reduction in computation time and near linear scaling with time-series length, despite an average reduction in classification accuracy of just 7%. catch22 captures a diverse and interpretable signature of time series in terms of their properties, including linear and non-linear autocorrelation, successive differences, value distributions and outliers, and fluctuation scaling properties. We provide an efficient implementation of catch22, accessible from many programming environments, that facilitates feature-based time-series analysis for scientific, industrial, financial and medical applications using a common language of interpretable time-series properties.
Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case2020-01-22   ${\displaystyle \cong }$
In this paper, we present a new approach to time series forecasting. Time series data are prevalent in many scientific and engineering disciplines. Time series forecasting is a crucial task in modeling time series data, and is an important area of machine learning. In this work we developed a novel method that employs Transformer-based machine learning models to forecast time series data. This approach works by leveraging self-attention mechanisms to learn complex patterns and dynamics from time series data. Moreover, it is a generic framework and can be applied to univariate and multivariate time series data, as well as time series embeddings. Using influenza-like illness (ILI) forecasting as a case study, we show that the forecasting results produced by our approach are favorably comparable to the state-of-the-art.
PatchX: Explaining Deep Models by Intelligible Pattern Patches for Time-series Classification2021-02-11   ${\displaystyle \cong }$
The classification of time-series data is pivotal for streaming data and comes with many challenges. Although the amount of publicly available datasets increases rapidly, deep neural models are only exploited in a few areas. Traditional methods are still used very often compared to deep neural models. These methods get preferred in safety-critical, financial, or medical fields because of their interpretable results. However, their performance and scale-ability are limited, and finding suitable explanations for time-series classification tasks is challenging due to the concepts hidden in the numerical time-series data. Visualizing complete time-series results in a cognitive overload concerning our perception and leads to confusion. Therefore, we believe that patch-wise processing of the data results in a more interpretable representation. We propose a novel hybrid approach that utilizes deep neural networks and traditional machine learning algorithms to introduce an interpretable and scale-able time-series classification approach. Our method first performs a fine-grained classification for the patches followed by sample level classification.
Highly comparative feature-based time-series classification2014-05-08   ${\displaystyle \cong }$
A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation.
Applying Nature-Inspired Optimization Algorithms for Selecting Important Timestamps to Reduce Time Series Dimensionality2018-12-09   ${\displaystyle \cong }$
Time series data account for a major part of data supply available today. Time series mining handles several tasks such as classification, clustering, query-by-content, prediction, and others. Performing data mining tasks on raw time series is inefficient as these data are high-dimensional by nature. Instead, time series are first pre-processed using several techniques before different data mining tasks can be performed on them. In general, there are two main approaches to reduce time series dimensionality, the first is what we call landmark methods. These methods are based on finding characteristic features in the target time series. The second is based on data transformations. These methods transform the time series from the original space into a reduced space, where they can be managed more efficiently. The method we present in this paper applies a third approach, as it projects a time series onto a lower-dimensional space by selecting important points in the time series. The novelty of our method is that these points are not chosen according to a geometric criterion, which is subjective in most cases, but through an optimization process. The other important characteristic of our method is that these important points are selected on a dataset-level and not on a single time series-level. The direct advantage of this strategy is that the distance defined on the low-dimensional space lower bounds the original distance applied to raw data. This enables us to apply the popular GEMINI algorithm. The promising results of our experiments on a wide variety of time series datasets, using different optimizers, and applied to the two major data mining tasks, validate our new method.
Complexity Measures and Features for Times Series classification2020-03-04   ${\displaystyle \cong }$
Classification of time series is a growing problem in different disciplines due to the progressive digitalization of the world. Currently, the state of the art in time series classification is dominated by Collective of Transformation-Based Ensembles. This algorithm is composed of several classifiers of diverse nature that are combined according to their results in an internal cross validation procedure. Its high complexity prevents it from being applied to large datasets. One Nearest Neighbours with Dynamic Time Warping remains the base classifier in any time series classification problem, for its simplicity and good results. Despite their good performance, they share a weakness, which is that they are not interpretable. In the field of time series classification, there is a tradeoff between accuracy and interpretability. In this work, we propose a set of characteristics capable of extracting information of the structure of the time series in order to face time series classification problems. The use of these characteristics allows the use of traditional classification algorithms in time series problems. The experimental results demonstrate a statistically significant improvement in the accuracy of the results obtained by our proposal with respect to the original time series. Apart from the improvement in accuracy, our proposal is able to offer interpretable results based on the set of characteristics proposed.
Multi-task learning of time series and its application to the travel demand2017-12-21   ${\displaystyle \cong }$
We address the problem of modeling and prediction of a set of temporal events in the context of intelligent transportation systems. To leverage the information shared by different events, we propose a multi-task learning framework. We develop a support vector regression model for joint learning of mutually dependent time series. It is the regularization-based multi-task learning previously developed for the classification case and extended to time series. We discuss the relatedness of observed time series and first deploy the dynamic time warping distance measure to identify groups of similar series. Then we take into account both time and scale warping and propose to align multiple time series by inferring their common latent representation. We test the proposed models on the problem of travel demand prediction in Nancy (France) public transport system and analyze the benefits of multi-task learning.
Gated Transformer Networks for Multivariate Time Series Classification2021-03-26   ${\displaystyle \cong }$
Deep learning model (primarily convolutional networks and LSTM) for time series classification has been studied broadly by the community with the wide applications in different domains like healthcare, finance, industrial engineering and IoT. Meanwhile, Transformer Networks recently achieved frontier performance on various natural language processing and computer vision tasks. In this work, we explored a simple extension of the current Transformer Networks with gating, named Gated Transformer Networks (GTN) for the multivariate time series classification problem. With the gating that merges two towers of Transformer which model the channel-wise and step-wise correlations respectively, we show how GTN is naturally and effectively suitable for the multivariate time series classification task. We conduct comprehensive experiments on thirteen dataset with full ablation study. Our results show that GTN is able to achieve competing results with current state-of-the-art deep learning models. We also explored the attention map for the natural interpretability of GTN on time series modeling. Our preliminary results provide a strong baseline for the Transformer Networks on multivariate time series classification task and grounds the foundation for future research.
Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification2020-10-01   ${\displaystyle \cong }$
Time series classification is an important problem in data mining with several applications in different domains. Because time series data are usually high dimensional, dimensionality reduction techniques have been proposed as an efficient approach to lower their dimensionality. One of the most popular dimensionality reduction techniques of time series data is the Symbolic Aggregate Approximation (SAX), which is inspired by algorithms from text mining and bioinformatics. SAX is simple and efficient because it uses precomputed distances. The disadvantage of SAX is its inability to accurately represent important points in the time series. In this paper we present Extreme-SAX (E-SAX), which uses only the extreme points of each segment to represent the time series. E-SAX has exactly the same simplicity and efficiency of the original SAX, yet it gives better results in time series classification than the original SAX, as we show in extensive experiments on a variety of time series datasets.
Deep learning for time series classification2020-10-01   ${\displaystyle \cong }$
Time series analysis is a field of data science which is interested in analyzing sequences of numerical values ordered in time. Time series are particularly interesting because they allow us to visualize and understand the evolution of a process over time. Their analysis can reveal trends, relationships and similarities across the data. There exists numerous fields containing data in the form of time series: health care (electrocardiogram, blood sugar, etc.), activity recognition, remote sensing, finance (stock market price), industry (sensors), etc. Time series classification consists of constructing algorithms dedicated to automatically label time series data. The sequential aspect of time series data requires the development of algorithms that are able to harness this temporal property, thus making the existing off-the-shelf machine learning models for traditional tabular data suboptimal for solving the underlying task. In this context, deep learning has emerged in recent years as one of the most effective methods for tackling the supervised classification task, particularly in the field of computer vision. The main objective of this thesis was to study and develop deep neural networks specifically constructed for the classification of time series data. We thus carried out the first large scale experimental study allowing us to compare the existing deep methods and to position them compared other non-deep learning based state-of-the-art methods. Subsequently, we made numerous contributions in this area, notably in the context of transfer learning, data augmentation, ensembling and adversarial attacks. Finally, we have also proposed a novel architecture, based on the famous Inception network (Google), which ranks among the most efficient to date.
A Deep Learning Approach for Active Anomaly Detection of Extragalactic Transients2021-03-22   ${\displaystyle \cong }$
There is a shortage of multi-wavelength and spectroscopic followup capabilities given the number of transient and variable astrophysical events discovered through wide-field, optical surveys such as the upcoming Vera C. Rubin Observatory. From the haystack of potential science targets, astronomers must allocate scarce resources to study a selection of needles in real time. Here we present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events using 1% of the PLAsTiCC dataset to train the autoencoder. Our unsupervised method uniquely works with unlabeled, real time, multivariate and aperiodic data. We rank 1,129,184 events based on an anomaly score estimated using an isolation forest. We find that our pipeline successfully ranks rarer classes of transients as more anomalous. Using simple cuts in anomaly score and uncertainty, we identify a pure (~95% pure) sample of rare transients (i.e., transients other than Type Ia, Type II and Type Ibc supernovae) including superluminous and pair-instability supernovae. Finally, our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies in the era of the Rubin Observatory.
Automatic time-series phenotyping using massive feature extraction2016-12-15   ${\displaystyle \cong }$
Across a far-reaching diversity of scientific and industrial applications, a general key problem involves relating the structure of time-series data to a meaningful outcome, such as detecting anomalous events from sensor recordings, or diagnosing patients from physiological time-series measurements like heart rate or brain activity. Currently, researchers must devote considerable effort manually devising, or searching for, properties of their time series that are suitable for the particular analysis problem at hand. Addressing this non-systematic and time-consuming procedure, here we introduce a new tool, hctsa, that selects interpretable and useful properties of time series automatically, by comparing implementations over 7700 time-series features drawn from diverse scientific literatures. Using two exemplar biological applications, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in their time-series data.
GRATIS: GeneRAting TIme Series with diverse and controllable characteristics2020-01-07   ${\displaystyle \cong }$
The explosion of time series data in recent years has brought a flourish of new time series analysis methods, for forecasting, clustering, classification and other tasks. The evaluation of these new methods requires either collecting or simulating a diverse set of time series benchmarking data to enable reliable comparisons against alternative approaches. We propose GeneRAting TIme Series with diverse and controllable characteristics, named GRATIS, with the use of mixture autoregressive (MAR) models. We simulate sets of time series using MAR models and investigate the diversity and coverage of the generated time series in a time series feature space. By tuning the parameters of the MAR models, GRATIS is also able to efficiently generate new time series with controllable features. In general, as a costless surrogate to the traditional data collection approach, GRATIS can be used as an evaluation tool for tasks such as time series forecasting and classification. We illustrate the usefulness of our time series generation process through a time series forecasting application.
Learning from Irregularly-Sampled Time Series: A Missing Data Perspective2020-08-17   ${\displaystyle \cong }$
Irregularly-sampled time series occur in many domains including healthcare. They can be challenging to model because they do not naturally yield a fixed-dimensional representation as required by many standard machine learning models. In this paper, we consider irregular sampling from the perspective of missing data. We model observed irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function. We introduce an encoder-decoder framework for learning from such generic indexed sequences. We propose learning methods for this framework based on variational autoencoders and generative adversarial networks. For continuous irregularly-sampled time series, we introduce continuous convolutional layers that can efficiently interface with existing neural network architectures. Experiments show that our models are able to achieve competitive or better classification results on irregularly-sampled multivariate time series compared to recent RNN models while offering significantly faster training times.
Deep Cellular Recurrent Network for Efficient Analysis of Time-Series Data with Spatial Information2021-01-12   ${\displaystyle \cong }$
Efficient processing of large-scale time series data is an intricate problem in machine learning. Conventional sensor signal processing pipelines with hand engineered feature extraction often involve huge computational cost with high dimensional data. Deep recurrent neural networks have shown promise in automated feature learning for improved time-series processing. However, generic deep recurrent models grow in scale and depth with increased complexity of the data. This is particularly challenging in presence of high dimensional data with temporal and spatial characteristics. Consequently, this work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to efficiently process complex multi-dimensional time series data with spatial information. The cellular recurrent architecture in the proposed model allows for location-aware synchronous processing of time series data from spatially distributed sensor signal sources. Extensive trainable parameter sharing due to cellularity in the proposed architecture ensures efficiency in the use of recurrent processing units with high-dimensional inputs. This study also investigates the versatility of the proposed DCRNN model for classification of multi-class time series data from different application domains. Consequently, the proposed DCRNN architecture is evaluated using two time-series datasets: a multichannel scalp EEG dataset for seizure detection, and a machine fault detection dataset obtained in-house. The results suggest that the proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
Time Series Forecasting With Deep Learning: A Survey2020-04-28   ${\displaystyle \cong }$
Numerous deep learning architectures have been developed to accommodate the diversity of time series datasets across different domains. In this article, we survey common encoder and decoder designs used in both one-step-ahead and multi-horizon time series forecasting -- describing how temporal information is incorporated into predictions by each model. Next, we highlight recent developments in hybrid deep learning models, which combine well-studied statistical models with neural network components to improve pure methods in either category. Lastly, we outline some ways in which deep learning can also facilitate decision support with time series data.
Forecasting with time series imaging2020-06-04   ${\displaystyle \cong }$
Feature-based time series representations have attracted substantial attention in a wide range of time series analysis methods. Recently, the use of time series features for forecast model averaging has been an emerging research focus in the forecasting community. Nonetheless, most of the existing approaches depend on the manual choice of an appropriate set of features. Exploiting machine learning methods to extract features from time series automatically becomes crucial in state-of-the-art time series analysis. In this paper, we introduce an automated approach to extract time series features based on time series imaging. We first transform time series into recurrence plots, from which local features can be extracted using computer vision algorithms. The extracted features are used for forecast model averaging. Our experiments show that forecasting based on automatically extracted features, with less human intervention and a more comprehensive view of the raw time series data, yields highly comparable performances with the best methods in the largest forecasting competition dataset (M4) and outperforms the top methods in the Tourism forecasting competition dataset.