News Blog Paper China
nocaps: novel object captioning at scale2019-09-30   ${\displaystyle \cong }$
Image captioning models have achieved impressive results on datasets containing limited visual concepts and large amounts of paired image-caption training data. However, if these models are to ever function in the wild, a much larger variety of visual concepts must be learned, ideally from less supervision. To encourage the development of image captioning models that can learn visual concepts from alternative data sources, such as object detection datasets, we present the first large-scale benchmark for this task. Dubbed 'nocaps', for novel object captioning at scale, our benchmark consists of 166,100 human-generated captions describing 15,100 images from the OpenImages validation and test sets. The associated training data consists of COCO image-caption pairs, plus OpenImages image-level labels and object bounding boxes. Since OpenImages contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). We extend existing novel object captioning models to establish strong baselines for this benchmark and provide analysis to guide future work on this task.
Compositional Generalization in Image Captioning2019-09-16   ${\displaystyle \cong }$
Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and image--sentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.
Egoshots, an ego-vision life-logging dataset and semantic fidelity metric to evaluate diversity in image captioning models2020-03-27   ${\displaystyle \cong }$
Image captioning models have been able to generate grammatically correct and human understandable sentences. However most of the captions convey limited information as the model used is trained on datasets that do not caption all possible objects existing in everyday life. Due to this lack of prior information most of the captions are biased to only a few objects present in the scene, hence limiting their usage in daily life. In this paper, we attempt to show the biased nature of the currently existing image captioning models and present a new image captioning dataset, Egoshots, consisting of 978 real life images with no captions. We further exploit the state of the art pre-trained image captioning and object recognition networks to annotate our images and show the limitations of existing works. Furthermore, in order to evaluate the quality of the generated captions, we propose a new image captioning metric, object based Semantic Fidelity (SF). Existing image captioning metrics can evaluate a caption only in the presence of their corresponding annotations; however, SF allows evaluating captions generated for images without annotations, making it highly useful for real life generated captions.
Image Captioning based on Deep Reinforcement Learning2018-09-13   ${\displaystyle \cong }$
Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. What's more, with the complexity of understanding image content and diverse ways of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called "policy network" and "value network" to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.
Diverse and Styled Image Captioning Using SVD-Based Mixture of Recurrent Experts2020-07-07   ${\displaystyle \cong }$
With great advances in vision and natural language processing, the generation of image captions becomes a need. In a recent paper, Mathews, Xie and He [1], extended a new model to generate styled captions by separating semantics and style. In continuation of this work, here a new captioning model is developed including an image encoder to extract the features, a mixture of recurrent networks to embed the set of extracted features to a set of words, and a sentence generator that combines the obtained words as a stylized sentence. The resulted system that entitled as Mixture of Recurrent Experts (MoRE), uses a new training algorithm that derives singular value decomposition (SVD) from weighting matrices of Recurrent Neural Networks (RNNs) to increase the diversity of captions. Each decomposition step depends on a distinctive factor based on the number of RNNs in MoRE. Since the used sentence generator gives a stylized language corpus without paired images, our captioning model can do the same. Besides, the styled and diverse captions are extracted without training on a densely labeled or styled dataset. To validate this captioning model, we use Microsoft COCO which is a standard factual image caption dataset. We show that the proposed captioning model can generate a diverse and stylized image captions without the necessity of extra-labeling. The results also show better descriptions in terms of content accuracy.
B-SCST: Bayesian Self-Critical Sequence Training for Image Captioning2020-06-28   ${\displaystyle \cong }$
Bayesian deep neural networks (DNNs) can provide a mathematically grounded framework to quantify uncertainty in predictions from image captioning models. We propose a Bayesian variant of policy-gradient based reinforcement learning training technique for image captioning models to directly optimize non-differentiable image captioning quality metrics such as CIDEr-D. We extend the well-known Self-Critical Sequence Training (SCST) approach for image captioning models by incorporating Bayesian inference, and refer to it as B-SCST. The "baseline" for the policy-gradients in B-SCST is generated by averaging predictive quality metrics (CIDEr-D) of the captions drawn from the distribution obtained using a Bayesian DNN model. We infer this predictive distribution using Monte Carlo (MC) dropout approximate variational inference. We show that B-SCST improves CIDEr-D scores on Flickr30k, MS COCO and VizWiz image captioning datasets, compared to the SCST approach. We also provide a study of uncertainty quantification for the predicted captions, and demonstrate that it correlates well with the CIDEr-D scores. To our knowledge, this is the first such analysis, and it can improve the interpretability of image captioning model outputs, which is critical for practical applications.
Length-Controllable Image Captioning2020-07-18   ${\displaystyle \cong }$
The last decade has witnessed remarkable progress in the image captioning task; however, most existing methods cannot control their captions, \emph{e.g.}, choosing to describe the image either roughly or in detail. In this paper, we propose to use a simple length level embedding to endow them with this ability. Moreover, due to their autoregressive nature, the computational complexity of existing models increases linearly as the length of the generated captions grows. Thus, we further devise a non-autoregressive image captioning approach that can generate captions in a length-irrelevant complexity. We verify the merit of the proposed length level embedding on three models: two state-of-the-art (SOTA) autoregressive models with different types of decoder, as well as our proposed non-autoregressive model, to show its generalization ability. In the experiments, our length-controllable image captioning models not only achieve SOTA performance on the challenging MS COCO dataset but also generate length-controllable and diverse image captions. Specifically, our non-autoregressive model outperforms the autoregressive baselines in terms of controllability and diversity, and also significantly improves the decoding efficiency for long captions. Our code and models are released at \textcolor{magenta}{\texttt{https://github.com/bearcatt/LaBERT}}.
Alleviating Noisy Data in Image Captioning with Cooperative Distillation2020-12-21   ${\displaystyle \cong }$
Image captioning systems have made substantial progress, largely due to the availability of curated datasets like Microsoft COCO or Vizwiz that have accurate descriptions of their corresponding images. Unfortunately, scarce availability of such cleanly labeled data results in trained algorithms producing captions that can be terse and idiosyncratically specific to details in the image. We propose a new technique, cooperative distillation that combines clean curated datasets with the web-scale automatically extracted captions of the Google Conceptual Captions dataset (GCC), which can have poor descriptions of images, but is abundant in size and therefore provides a rich vocabulary resulting in more expressive captions.
A Comprehensive Survey of Deep Learning for Image Captioning2018-10-14   ${\displaystyle \cong }$
Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.
XGPT: Cross-modal Generative Pre-Training for Image Captioning2020-03-04   ${\displaystyle \cong }$
While many BERT-based cross-modal pre-trained models produce excellent results on downstream understanding tasks like image-text retrieval and VQA, they cannot be applied to generation tasks directly. In this paper, we propose XGPT, a new method of Cross-modal Generative Pre-Training for Image Captioning that is designed to pre-train text-to-image caption generators through three novel generation tasks, including Image-conditioned Masked Language Modeling (IMLM), Image-conditioned Denoising Autoencoding (IDA), and Text-conditioned Image Feature Generation (TIFG). As a result, the pre-trained XGPT can be fine-tuned without any task-specific architecture modifications to create state-of-the-art models for image captioning. Experiments show that XGPT obtains new state-of-the-art results on the benchmark datasets, including COCO Captions and Flickr30k Captions. We also use XGPT to generate new image captions as data augmentation for the image retrieval task and achieve significant improvement on all recall metrics.
Fusion Models for Improved Visual Captioning2020-10-28   ${\displaystyle \cong }$
Visual captioning aims to generate textual descriptions given images. Traditionally, the captioning models are trained on human annotated datasets such as Flickr30k and MS-COCO, which are limited in size and diversity. This limitation hinders the generalization capabilities of these models while also rendering them to often make mistakes. Language models can, however, be trained on vast amounts of freely available unlabelled data and have recently emerged as successful language encoders and coherent text generators. Meanwhile, several unimodal and multimodal fusion techniques have been proven to work well for natural language generation and automatic speech recognition. Building on these recent developments, and with an aim of improving the quality of generated captions, the contribution of our work in this paper is two-fold: First, we propose a generic multimodal model fusion framework for caption generation as well as emendation where we utilize different fusion strategies to integrate a pretrained Auxiliary Language Model (AuxLM) within the traditional encoder-decoder visual captioning frameworks. Next, we employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM), namely BERT, with a visual captioning model, viz. Show, Attend, and Tell, for emending both syntactic and semantic errors in captions. Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline, indicating the usefulness of our proposed multimodal fusion strategies. Further, we perform a preliminary qualitative analysis on the emended captions and identify error categories based on the type of corrections.
SD-RSIC: Summarization Driven Deep Remote Sensing Image Captioning2020-06-15   ${\displaystyle \cong }$
Deep neural networks (DNNs) have been recently found popular for image captioning problems in remote sensing (RS). Existing DNN based approaches rely on the availability of a training set made up of a high number of RS images with their captions. However, captions of training images may contain redundant information (they can be repetitive or semantically similar to each other), resulting in information deficiency while learning a mapping from image domain to language domain. To overcome this limitation, in this paper we present a novel Summarization Driven Remote Sensing Image Captioning (SD-RSIC) approach. The proposed approach consists of three main steps. The first step obtains the standard image captions by jointly exploiting convolutional neural networks (CNNs) with long short-term memory (LSTM) networks. The second step, unlike the existing RS image captioning methods, summarizes the ground-truth captions of each training image into a single caption by exploiting sequence to sequence neural networks and eliminates the redundancy present in the training set. The third step automatically defines the adaptive weights associated to each RS image to combine the standard captions with the summarized captions based on the semantic content of the image. This is achieved by a novel adaptive weighting strategy defined in the context of LSTM networks. Experimental results obtained on the RSCID, UCM-Captions and Sydney-Captions datasets show the effectiveness of the proposed approach compared to the state-of-the-art RS image captioning approaches.
RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning2020-07-13   ${\displaystyle \cong }$
Research on continual learning has led to a variety of approaches to mitigating catastrophic forgetting in feed-forward classification networks. Until now surprisingly little attention has been focused on continual learning of recurrent models applied to problems like image captioning. In this paper we take a systematic look at continual learning of LSTM-based models for image captioning. We propose an attention-based approach that explicitly accommodates the transient nature of vocabularies in continual image captioning tasks -- i.e. that task vocabularies are not disjoint. We call our method Recurrent Attention to Transient Tasks (RATT), and also show how to adapt continual learning approaches based on weight egularization and knowledge distillation to recurrent continual learning problems. We apply our approaches to incremental image captioning problem on two new continual learning benchmarks we define using the MS-COCO and Flickr30 datasets. Our results demonstrate that RATT is able to sequentially learn five captioning tasks while incurring no forgetting of previously learned ones.
Image Captioning as an Assistive Technology: Lessons Learned from VizWiz 2020 Challenge2020-12-21   ${\displaystyle \cong }$
Image captioning has recently demonstrated impressive progress largely owing to the introduction of neural network algorithms trained on curated dataset like MS-COCO. Often work in this field is motivated by the promise of deployment of captioning systems in practical applications. However, the scarcity of data and contexts in many competition datasets renders the utility of systems trained on these datasets limited as an assistive technology in real-world settings, such as helping visually impaired people navigate and accomplish everyday tasks. This gap motivated the introduction of the novel VizWiz dataset, which consists of images taken by the visually impaired and captions that have useful, task-oriented information. In an attempt to help the machine learning computer vision field realize its promise of producing technologies that have positive social impact, the curators of the VizWiz dataset host several competitions, including one for image captioning. This work details the theory and engineering from our winning submission to the 2020 captioning competition. Our work provides a step towards improved assistive image captioning systems.
Aligning Multilingual Word Embeddings for Cross-Modal Retrieval Task2019-10-08   ${\displaystyle \cong }$
In this paper, we propose a new approach to learn multimodal multilingual embeddings for matching images and their relevant captions in two languages. We combine two existing objective functions to make images and captions close in a joint embedding space while adapting the alignment of word embeddings between existing languages in our model. We show that our approach enables better generalization, achieving state-of-the-art performance in text-to-image and image-to-text retrieval task, and caption-caption similarity task. Two multimodal multilingual datasets are used for evaluation: Multi30k with German and English captions and Microsoft-COCO with English and Japanese captions.
Diverse Image Captioning with Context-Object Split Latent Spaces2020-11-02   ${\displaystyle \cong }$
Diverse image captioning models aim to learn one-to-many mappings that are innate to cross-domain datasets, such as of images and texts. Current methods for this task are based on generative latent variable models, e.g. VAEs with structured latent spaces. Yet, the amount of multimodality captured by prior work is limited to that of the paired training data -- the true diversity of the underlying generative process is not fully captured. To address this limitation, we leverage the contextual descriptions in the dataset that explain similar contexts in different visual scenes. To this end, we introduce a novel factorization of the latent space, termed context-object split, to model diversity in contextual descriptions across images and texts within the dataset. Our framework not only enables diverse captioning through context-based pseudo supervision, but extends this to images with novel objects and without paired captions in the training data. We evaluate our COS-CVAE approach on the standard COCO dataset and on the held-out COCO dataset consisting of images with novel objects, showing significant gains in accuracy and diversity.
Attention Beam: An Image Captioning Approach2020-11-03   ${\displaystyle \cong }$
The aim of image captioning is to generate textual description of a given image. Though seemingly an easy task for humans, it is challenging for machines as it requires the ability to comprehend the image (computer vision) and consequently generate a human-like description for the image (natural language understanding). In recent times, encoder-decoder based architectures have achieved state-of-the-art results for image captioning. Here, we present a heuristic of beam search on top of the encoder-decoder based architecture that gives better quality captions on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.
Multi-task Regularization Based on Infrequent Classes for Audio Captioning2020-07-09   ${\displaystyle \cong }$
Audio captioning is a multi-modal task, focusing on using natural language for describing the contents of general audio. Most audio captioning methods are based on deep neural networks, employing an encoder-decoder scheme and a dataset with audio clips and corresponding natural language descriptions (i.e. captions). A significant challenge for audio captioning is the distribution of words in the captions: some words are very frequent but acoustically non-informative, i.e. the function words (e.g. "a", "the"), and other words are infrequent but informative, i.e. the content words (e.g. adjectives, nouns). In this paper we propose two methods to mitigate this class imbalance problem. First, in an autoencoder setting for audio captioning, we weigh each word's contribution to the training loss inversely proportional to its number of occurrences in the whole dataset. Secondly, in addition to multi-class, word-level audio captioning task, we define a multi-label side task based on clip-level content word detection by training a separate decoder. We use the loss from the second task to regularize the jointly trained encoder for the audio captioning task. We evaluate our method using Clotho, a recently published, wide-scale audio captioning dataset, and our results show an increase of 37\% relative improvement with SPIDEr metric over the baseline method.
Exploring and Distilling Cross-Modal Information for Image Captioning2020-03-15   ${\displaystyle \cong }$
Recently, attention-based encoder-decoder models have been used extensively in image captioning. Yet there is still great difficulty for the current methods to achieve deep image understanding. In this work, we argue that such understanding requires visual attention to correlated image regions and semantic attention to coherent attributes of interest. Based on the Transformer, to perform effective attention, we explore image captioning from a cross-modal perspective and propose the Global-and-Local Information Exploring-and-Distilling approach that explores and distills the source information in vision and language. It globally provides the aspect vector, a spatial and relational representation of images based on caption contexts, through the extraction of salient region groupings and attribute collocations, and locally extracts the fine-grained regions and attributes in reference to the aspect vector for word selection. Our Transformer-based model achieves a CIDEr score of 129.3 in offline COCO evaluation on the COCO testing set with remarkable efficiency in terms of accuracy, speed, and parameter budget.
Compare and Reweight: Distinctive Image Captioning Using Similar Images Sets2020-07-14   ${\displaystyle \cong }$
A wide range of image captioning models has been developed, achieving significant improvement based on popular metrics, such as BLEU, CIDEr, and SPICE. However, although the generated captions can accurately describe the image, they are generic for similar images and lack distinctiveness, i.e., cannot properly describe the uniqueness of each image. In this paper, we aim to improve the distinctiveness of image captions through training with sets of similar images. First, we propose a distinctiveness metric -- between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of similar images. Our metric shows that the human annotations of each image are not equivalent based on distinctiveness. Thus we propose several new training strategies to encourage the distinctiveness of the generated caption for each image, which are based on using CIDErBtw in a weighted loss function or as a reinforcement learning reward. Finally, extensive experiments are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further confirmed through a user study.