News Blog Paper China
FraudJudger: Real-World Data Oriented Fraud Detection on Digital Payment Platforms2019-09-05   ${\displaystyle \cong }$
Automated fraud behaviors detection on electronic payment platforms is a tough problem. Fraud users often exploit the vulnerability of payment platforms and the carelessness of users to defraud money, steal passwords, do money laundering, etc, which causes enormous losses to digital payment platforms and users. There are many challenges for fraud detection in practice. Traditional fraud detection methods require a large-scale manually labeled dataset, which is hard to obtain in reality. Manually labeled data cost tremendous human efforts. Besides, the continuous and rapid evolution of fraud users makes it hard to find new fraud patterns based on existing detection rules. In our work, we propose a real-world data oriented detection paradigm which can detect fraud users and upgrade its detection ability automatically. Based on the new paradigm, we design a novel fraud detection model, FraudJudger, to analyze users behaviors on digital payment platforms and detect fraud users with fewer labeled data in training. FraudJudger can learn the latent representations of users from unlabeled data with the help of Adversarial Autoencoder (AAE). Furthermore, FraudJudger can find new fraud patterns from unknown users by cluster analysis. Our experiment is based on a real-world electronic payment dataset. Comparing with other well-known fraud detection methods, FraudJudger can achieve better detection performance with only 10% labeled data.
A Semi-supervised Graph Attentive Network for Financial Fraud Detection2020-02-28   ${\displaystyle \cong }$
With the rapid growth of financial services, fraud detection has been a very important problem to guarantee a healthy environment for both users and providers. Conventional solutions for fraud detection mainly use some rule-based methods or distract some features manually to perform prediction. However, in financial services, users have rich interactions and they themselves always show multifaceted information. These data form a large multiview network, which is not fully exploited by conventional methods. Additionally, among the network, only very few of the users are labelled, which also poses a great challenge for only utilizing labeled data to achieve a satisfied performance on fraud detection. To address the problem, we expand the labeled data through their social relations to get the unlabeled data and propose a semi-supervised attentive graph neural network, namedSemiGNN to utilize the multi-view labeled and unlabeled data for fraud detection. Moreover, we propose a hierarchical attention mechanism to better correlate different neighbors and different views. Simultaneously, the attention mechanism can make the model interpretable and tell what are the important factors for the fraud and why the users are predicted as fraud. Experimentally, we conduct the prediction task on the users of Alipay, one of the largest third-party online and offline cashless payment platform serving more than 4 hundreds of million users in China. By utilizing the social relations and the user attributes, our method can achieve a better accuracy compared with the state-of-the-art methods on two tasks. Moreover, the interpretable results also give interesting intuitions regarding the tasks.
Applying support vector data description for fraud detection2020-05-31   ${\displaystyle \cong }$
Fraud detection is an important topic that applies to various enterprises such as banking and financial sectors, insurance, government agencies, law enforcement, and more. Fraud attempts have been risen remarkably in current years, shaping fraud detection an essential topic for research. One of the main challenges in fraud detection is acquiring fraud samples which is a complex and challenging task. In order to deal with this challenge, we apply one-class classification methods such as SVDD which does not need the fraud samples for training. Also, we present our algorithm REDBSCAN which is an extension of DBSCAN to reduce the number of samples and select those that keep the shape of data. The results obtained by the implementation of the proposed method indicated that the fraud detection process was improved in both performance and speed.
Deep Q-Network-based Adaptive Alert Threshold Selection Policy for Payment Fraud Systems in Retail Banking2020-10-21   ${\displaystyle \cong }$
Machine learning models have widely been used in fraud detection systems. Most of the research and development efforts have been concentrated on improving the performance of the fraud scoring models. Yet, the downstream fraud alert systems still have limited to no model adoption and rely on manual steps. Alert systems are pervasively used across all payment channels in retail banking and play an important role in the overall fraud detection process. Current fraud detection systems end up with large numbers of dropped alerts due to their inability to account for the alert processing capacity. Ideally, alert threshold selection enables the system to maximize the fraud detection while balancing the upstream fraud scores and the available bandwidth of the alert processing teams. However, in practice, fixed thresholds that are used for their simplicity do not have this ability. In this paper, we propose an enhanced threshold selection policy for fraud alert systems. The proposed approach formulates the threshold selection as a sequential decision making problem and uses Deep Q-Network based reinforcement learning. Experimental results show that this adaptive approach outperforms the current static solutions by reducing the fraud losses as well as improving the operational efficiency of the alert system.
Computer-Assisted Fraud Detection, From Active Learning to Reward Maximization2018-11-20   ${\displaystyle \cong }$
The automatic detection of frauds in banking transactions has been recently studied as a way to help the analysts finding fraudulent operations. Due to the availability of a human feedback, this task has been studied in the framework of active learning: the fraud predictor is allowed to sequentially call on an oracle. This human intervention is used to label new examples and improve the classification accuracy of the latter. Such a setting is not adapted in the case of fraud detection with financial data in European countries. Actually, as a human verification is mandatory to consider a fraud as really detected, it is not necessary to focus on improving the classifier. We introduce the setting of 'Computer-assisted fraud detection' where the goal is to minimize the number of non fraudulent operations submitted to an oracle. The existing methods are applied to this task and we show that a simple meta-algorithm provides competitive results in this scenario on benchmark datasets.
Interleaved Sequence RNNs for Fraud Detection2020-06-17   ${\displaystyle \cong }$
Payment card fraud causes multibillion dollar losses for banks and merchants worldwide, often fueling complex criminal activities. To address this, many real-time fraud detection systems use tree-based models, demanding complex feature engineering systems to efficiently enrich transactions with historical data while complying with millisecond-level latencies. In this work, we do not require those expensive features by using recurrent neural networks and treating payments as an interleaved sequence, where the history of each card is an unbounded, irregular sub-sequence. We present a complete RNN framework to detect fraud in real-time, proposing an efficient ML pipeline from preprocessing to deployment. We show that these feature-free, multi-sequence RNNs outperform state-of-the-art models saving millions of dollars in fraud detection and using fewer computational resources.
Deep Learning Methods for Credit Card Fraud Detection2020-12-07   ${\displaystyle \cong }$
Credit card frauds are at an ever-increasing rate and have become a major problem in the financial sector. Because of these frauds, card users are hesitant in making purchases and both the merchants and financial institutions bear heavy losses. Some major challenges in credit card frauds involve the availability of public data, high class imbalance in data, changing nature of frauds and the high number of false alarms. Machine learning techniques have been used to detect credit card frauds but no fraud detection systems have been able to offer great efficiency to date. Recent development of deep learning has been applied to solve complex problems in various areas. This paper presents a thorough study of deep learning methods for the credit card fraud detection problem and compare their performance with various machine learning algorithms on three different financial datasets. Experimental results show great performance of the proposed deep learning methods against traditional machine learning models and imply that the proposed approaches can be implemented effectively for real-world credit card fraud detection systems.
I call BS: Fraud Detection in Crowdfunding Campaigns2020-06-30   ${\displaystyle \cong }$
Donations to charity-based crowdfunding environments have been on the rise in the last few years. Unsurprisingly, deception and fraud in such platforms have also increased, but have not been thoroughly studied to understand what characteristics can expose such behavior and allow its automatic detection and blocking. Indeed, crowdfunding platforms are the only ones typically performing oversight for the campaigns launched in each service. However, they are not properly incentivized to combat fraud among users and the campaigns they launch: on the one hand, a platform's revenue is directly proportional to the number of transactions performed (since the platform charges a fixed amount per donation); on the other hand, if a platform is transparent with respect to how much fraud it has, it may discourage potential donors from participating. In this paper, we take the first step in studying fraud in crowdfunding campaigns. We analyze data collected from different crowdfunding platforms, and annotate 700 campaigns as fraud or not. We compute various textual and image-based features and study their distributions and how they associate with campaign fraud. Using these attributes, we build machine learning classifiers, and show that it is possible to automatically classify such fraudulent behavior with up to 90.14% accuracy and 96.01% AUC, only using features available from the campaign's description at the moment of publication (i.e., with no user or money activity), making our method applicable for real-time operation on a user browser.
Modeling the Field Value Variations and Field Interactions Simultaneously for Fraud Detection2020-08-08   ${\displaystyle \cong }$
With the explosive growth of e-commerce, online transaction fraud has become one of the biggest challenges for e-commerce platforms. The historical behaviors of users provide rich information for digging into the users' fraud risk. While considerable efforts have been made in this direction, a long-standing challenge is how to effectively exploit internal user information and provide explainable prediction results. In fact, the value variations of same field from different events and the interactions of different fields inside one event have proven to be strong indicators for fraudulent behaviors. In this paper, we propose the Dual Importance-aware Factorization Machines (DIFM), which exploits the internal field information among users' behavior sequence from dual perspectives, i.e., field value variations and field interactions simultaneously for fraud detection. The proposed model is deployed in the risk management system of one of the world's largest e-commerce platforms, which utilize it to provide real-time transaction fraud detection. Experimental results on real industrial data from different regions in the platform clearly demonstrate that our model achieves significant improvements compared with various state-of-the-art baseline models. Moreover, the DIFM could also give an insight into the explanation of the prediction results from dual perspectives.
EnsemFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph2020-06-15   ${\displaystyle \cong }$
Fraud detection is extremely critical for e-commerce business. It is the intent of the companies to detect and prevent fraud as early as possible. Existing fraud detection methods try to identify unexpected dense subgraphs and treat related nodes as suspicious. Spectral relaxation-based methods solve the problem efficiently but hurt the performance due to the relaxed constraints. Besides, many methods cannot be accelerated with parallel computation or control the number of returned suspicious nodes because they provide a set of subgraphs with diverse node sizes. These drawbacks affect the real-world applications of existing methods. In this paper, we propose an Ensemble-based Fraud Detection (EnsemFDet) method to scale up fraud detection in bipartite graphs by decomposing the original problem into subproblems on small-sized subgraphs. By oversampling the graph and solving the subproblems, the ensemble approach further votes suspicious nodes without sacrificing the prediction accuracy. Extensive experiments have been done on real transaction data from JD.com, which is one of the world's largest e-commerce platforms. Experimental results demonstrate the effectiveness, practicability, and scalability of EnsemFDet. More specifically, EnsemFDet is up to 100x faster than the state-of-the-art methods due to its parallelism with all aspects of data.
Detecting organized eCommerce fraud using scalable categorical clustering2019-10-10   ${\displaystyle \cong }$
Online retail, eCommerce, frequently falls victim to fraud conducted by malicious customers (fraudsters) who obtain goods or services through deception. Fraud coordinated by groups of professional fraudsters that place several fraudulent orders to maximize their gain is referred to as organized fraud. Existing approaches to fraud detection typically analyze orders in isolation and they are not effective at identifying groups of fraudulent orders linked to organized fraud. These also wrongly identify many legitimate orders as fraud, which hinders their usage for automated fraud cancellation. We introduce a novel solution to detect organized fraud by analyzing orders in bulk. Our approach is based on clustering and aims to group together fraudulent orders placed by the same group of fraudsters. It selectively uses two existing techniques, agglomerative clustering and sampling to recursively group orders into small clusters in a reasonable amount of time. We assess our clustering technique on real-world orders placed on the Zalando website, the largest online apparel retailer in Europe1. Our clustering processes 100,000s of orders in a few hours and groups 35-45% of fraudulent orders together. We propose a simple technique built on top of our clustering that detects 26.2% of fraud while raising false alarms for only 0.1% of legitimate orders.
A Time Attention based Fraud Transaction Detection Framework2020-03-27   ${\displaystyle \cong }$
With online payment platforms being ubiquitous and important, fraud transaction detection has become the key for such platforms, to ensure user account safety and platform security. In this work, we present a novel method for detecting fraud transactions by leveraging patterns from both users' static profiles and users' dynamic behaviors in a unified framework. To address and explore the information of users' behaviors in continuous time spaces, we propose to use \emph{time attention based recurrent layers} to embed the detailed information of the time interval, such as the durations of specific actions, time differences between different actions and sequential behavior patterns,etc., in the same latent space. We further combine the learned embeddings and users' static profiles altogether in a unified framework. Extensive experiments validate the effectiveness of our proposed methods over state-of-the-art methods on various evaluation metrics, especially on \emph{recall at top percent} which is an important metric for measuring the balance between service experiences and risk of potential losses.
Instance-Level Explanations for Fraud Detection: A Case Study2018-06-19   ${\displaystyle \cong }$
Fraud detection is a difficult problem that can benefit from predictive modeling. However, the verification of a prediction is challenging; for a single insurance policy, the model only provides a prediction score. We present a case study where we reflect on different instance-level model explanation techniques to aid a fraud detection team in their work. To this end, we designed two novel dashboards combining various state-of-the-art explanation techniques. These enable the domain expert to analyze and understand predictions, dramatically speeding up the process of filtering potential fraud cases. Finally, we discuss the lessons learned and outline open research issues.
Fraud Detection using Data-Driven approach2020-09-08   ${\displaystyle \cong }$
The extensive use of the internet is continuously drifting businesses to incorporate their services in the online environment. One of the first spectrums to embrace this evolution was the banking sector. In fact, the first known online banking service came in 1980. It was deployed from a community bank located in Knoxville, called the United American Bank. Since then, internet banking has been offering ease and efficiency to costumers in completing their daily banking tasks. The ever increasing use of internet banking and a large number of online transactions increased fraudulent behavior also. As if fraud increase was not enough, the massive number of online transactions further increased the data complexity. Modern data sources are not only complex but generated at high speed and in real-time as well. This presents a serious problem and a definite reason why more advanced solutions are desired to protect financial service companies and credit cardholders. Therefore, this research paper aims to construct an efficient fraud detection model which is adaptive to customer behavior changes and tends to decrease fraud manipulation, by detecting and filtering fraud in real-time. In order to achieve this aim, a review of various methods is conducted, adding above a personal experience working in the Banking sector, specifically in the Fraud Detection office. Unlike the majority of reviewed methods, the proposed model in this research paper is able to detect fraud in the moment of occurrence using an incremental classifier. The evaluation of synthetic data, based on fraud scenarios selected in collaboration with domain experts that replicate typical, real-world attacks, shows that this approach correctly ranks complex frauds. In particular, our proposal detects fraudulent behavior and anomalies with up to 97\% detection rate while maintaining a satisfyingly low cost.
Transaction Fraud Detection Using GRU-centered Sandwich-structured Model2018-03-19   ${\displaystyle \cong }$
Rapid growth of modern technologies such as internet and mobile computing are bringing dramatically increased e-commerce payments, as well as the explosion in transaction fraud. Meanwhile, fraudsters are continually refining their tricks, making rule-based fraud detection systems difficult to handle the ever-changing fraud patterns. Many data mining and artificial intelligence methods have been proposed for identifying small anomalies in large transaction data sets, increasing detecting efficiency to some extent. Nevertheless, there is always a contradiction that most methods are irrelevant to transaction sequence, yet sequence-related methods usually cannot learn information at single-transaction level well. In this paper, a new "within->between->within" sandwich-structured sequence learning architecture has been proposed by stacking an ensemble method, a deep sequential learning method and another top-layer ensemble classifier in proper order. Moreover, attention mechanism has also been introduced in to further improve performance. Models in this structure have been manifested to be very efficient in scenarios like fraud detection, where the information sequence is made up of vectors with complex interconnected features.
One-Class Adversarial Nets for Fraud Detection2018-06-05   ${\displaystyle \cong }$
Many online applications, such as online social networks or knowledge bases, are often attacked by malicious users who commit different types of actions such as vandalism on Wikipedia or fraudulent reviews on eBay. Currently, most of the fraud detection approaches require a training dataset that contains records of both benign and malicious users. However, in practice, there are often no or very few records of malicious users. In this paper, we develop one-class adversarial nets (OCAN) for fraud detection using training data with only benign users. OCAN first uses LSTM-Autoencoder to learn the representations of benign users from their sequences of online activities. It then detects malicious users by training a discriminator with a complementary GAN model that is different from the regular GAN model. Experimental results show that our OCAN outperforms the state-of-the-art one-class classification models and achieves comparable performance with the latest multi-source LSTM model that requires both benign and malicious users in the training phase.
Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks2018-08-01   ${\displaystyle \cong }$
Learning to detect fraud in large-scale accounting data is one of the long-standing challenges in financial statement audits or fraud investigations. Nowadays, the majority of applied techniques refer to handcrafted rules derived from known fraud scenarios. While fairly successful, these rules exhibit the drawback that they often fail to generalize beyond known fraud scenarios and fraudsters gradually find ways to circumvent them. To overcome this disadvantage and inspired by the recent success of deep learning we propose the application of deep autoencoder neural networks to detect anomalous journal entries. We demonstrate that the trained network's reconstruction error obtainable for a journal entry and regularized by the entry's individual attribute probabilities can be interpreted as a highly adaptive anomaly assessment. Experiments on two real-world datasets of journal entries, show the effectiveness of the approach resulting in high f1-scores of 32.93 (dataset A) and 16.95 (dataset B) and less false positive alerts compared to state of the art baseline methods. Initial feedback received by chartered accountants and fraud examiners underpinned the quality of the approach in capturing highly relevant accounting anomalies.
robROSE: A robust approach for dealing with imbalanced data in fraud detection2020-03-22   ${\displaystyle \cong }$
A major challenge when trying to detect fraud is that the fraudulent activities form a minority class which make up a very small proportion of the data set. In most data sets, fraud occurs in typically less than 0.5% of the cases. Detecting fraud in such a highly imbalanced data set typically leads to predictions that favor the majority group, causing fraud to remain undetected. We discuss some popular oversampling techniques that solve the problem of imbalanced data by creating synthetic samples that mimic the minority class. A frequent problem when analyzing real data is the presence of anomalies or outliers. When such atypical observations are present in the data, most oversampling techniques are prone to create synthetic samples that distort the detection algorithm and spoil the resulting analysis. A useful tool for anomaly detection is robust statistics, which aims to find the outliers by first fitting the majority of the data and then flagging data observations that deviate from it. In this paper, we present a robust version of ROSE, called robROSE, which combines several promising approaches to cope simultaneously with the problem of imbalanced data and the presence of outliers. The proposed method achieves to enhance the presence of the fraud cases while ignoring anomalies. The good performance of our new sampling technique is illustrated on simulated and real data sets and it is shown that robROSE can provide better insight in the structure of the data. The source code of the robROSE algorithm is made freely available.
The Many Faces of Link Fraud2017-09-11   ${\displaystyle \cong }$
Most past work on social network link fraud detection tries to separate genuine users from fraudsters, implicitly assuming that there is only one type of fraudulent behavior. But is this assumption true? And, in either case, what are the characteristics of such fraudulent behaviors? In this work, we set up honeypots ("dummy" social network accounts), and buy fake followers (after careful IRB approval). We report the signs of such behaviors including oddities in local network connectivity, account attributes, and similarities and differences across fraud providers. Most valuably, we discover and characterize several types of fraud behaviors. We discuss how to leverage our insights in practice by engineering strongly performing entropy-based features and demonstrating high classification accuracy. Our contributions are (a) instrumentation: we detail our experimental setup and carefully engineered data collection process to scrape Twitter data while respecting API rate-limits, (b) observations on fraud multimodality: we analyze our honeypot fraudster ecosystem and give surprising insights into the multifaceted behaviors of these fraudster types, and (c) features: we propose novel features that give strong (>0.95 precision/recall) discriminative power on ground-truth Twitter data.
Explainable Deep Behavioral Sequence Clustering for Transaction Fraud Detection2021-01-11   ${\displaystyle \cong }$
In e-commerce industry, user behavior sequence data has been widely used in many business units such as search and merchandising to improve their products. However, it is rarely used in financial services not only due to its 3V characteristics - i.e. Volume, Velocity and Variety - but also due to its unstructured nature. In this paper, we propose a Financial Service scenario Deep learning based Behavior data representation method for Clustering (FinDeepBehaviorCluster) to detect fraudulent transactions. To utilize the behavior sequence data, we treat click stream data as event sequence, use time attention based Bi-LSTM to learn the sequence embedding in an unsupervised fashion, and combine them with intuitive features generated by risk experts to form a hybrid feature representation. We also propose a GPU powered HDBSCAN (pHDBSCAN) algorithm, which is an engineering optimization for the original HDBSCAN algorithm based on FAISS project, so that clustering can be carried out on hundreds of millions of transactions within a few minutes. The computation efficiency of the algorithm has increased 500 times compared with the original implementation, which makes flash fraud pattern detection feasible. Our experimental results show that the proposed FinDeepBehaviorCluster framework is able to catch missed fraudulent transactions with considerable business values. In addition, rule extraction method is applied to extract patterns from risky clusters using intuitive features, so that narrative descriptions can be attached to the risky clusters for case investigation, and unknown risk patterns can be mined for real-time fraud detection. In summary, FinDeepBehaviorCluster as a complementary risk management strategy to the existing real-time fraud detection engine, can further increase our fraud detection and proactive risk defense capabilities.