10,16,2021

News Blog Paper China
Visual Reinforcement Learning with Imagined Goals2018-12-04   ${\displaystyle \cong }$
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.
 
Learning Deep Parameterized Skills from Demonstration for Re-targetable Visuomotor Control2019-10-23   ${\displaystyle \cong }$
Robots need to learn skills that can not only generalize across similar problems but also be directed to a specific goal. Previous methods either train a new skill for every different goal or do not infer the specific target in the presence of multiple goals from visual data. We introduce an end-to-end method that represents targetable visuomotor skills as a goal-parameterized neural network policy. By training on an informative subset of available goals with the associated target parameters, we are able to learn a policy that can zero-shot generalize to previously unseen goals. We evaluate our method in a representative 2D simulation of a button-grid and on both button-pressing and peg-insertion tasks on two different physical arms. We demonstrate that our model trained on 33% of the possible goals is able to generalize to more than 90% of the targets in the scene for both simulation and robot experiments. We also successfully learn a mapping from target pixel coordinates to a robot policy to complete a specified goal.
 
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning2020-07-24   ${\displaystyle \cong }$
Intrinsically motivated spontaneous exploration is a key enabler of autonomous lifelong learning in human children. It enables the discovery and acquisition of large repertoires of skills through self-generation, self-selection, self-ordering and self-experimentation of learning goals. We present an algorithmic approach called Intrinsically Motivated Goal Exploration Processes (IMGEP) to enable similar properties of autonomous or self-supervised learning in machines. The IMGEP algorithmic architecture relies on several principles: 1) self-generation of goals, generalized as fitness functions; 2) selection of goals based on intrinsic rewards; 3) exploration with incremental goal-parameterized policy search and exploitation of the gathered data with a batch learning algorithm; 4) systematic reuse of information acquired when targeting a goal for improving towards other goals. We present a particularly efficient form of IMGEP, called Modular Population-Based IMGEP, that uses a population-based policy and an object-centered modularity in goals and mutations. We provide several implementations of this architecture and demonstrate their ability to automatically generate a learning curriculum within several experimental setups including a real humanoid robot that can explore multiple spaces of goals with several hundred continuous dimensions. While no particular target goal is provided to the system, this curriculum allows the discovery of skills that act as stepping stone for learning more complex skills, e.g. nested tool use. We show that learning diverse spaces of goals with intrinsic motivations is more efficient for learning complex skills than only trying to directly learn these complex skills.
 
Automatic Curriculum Learning through Value Disagreement2020-06-16   ${\displaystyle \cong }$
Continually solving new, unsolved tasks is the key to learning diverse behaviors. Through reinforcement learning (RL), we have made massive strides towards solving tasks that have a single goal. However, in the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency. When biological agents learn, there is often an organized and meaningful order to which learning happens. Inspired by this, we propose setting up an automatic curriculum for goals that the agent needs to solve. Our key insight is that if we can sample goals at the frontier of the set of goals that an agent is able to reach, it will provide a significantly stronger learning signal compared to randomly sampled goals. To operationalize this idea, we introduce a goal proposal module that prioritizes goals that maximize the epistemic uncertainty of the Q-function of the policy. This simple technique samples goals that are neither too hard nor too easy for the agent to solve, hence enabling continual improvement. We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
 
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning2020-02-09   ${\displaystyle \cong }$
Autonomous agents that must exhibit flexible and broad capabilities will need to be equipped with large repertoires of skills. Defining each skill with a manually-designed reward function limits this repertoire and imposes a manual engineering burden. Self-supervised agents that set their own goals can automate this process, but designing appropriate goal setting objectives can be difficult, and often involves heuristic design decisions. In this paper, we propose a formal exploration objective for goal-reaching policies that maximizes state coverage. We show that this objective is equivalent to maximizing goal reaching performance together with the entropy of the goal distribution, where goals correspond to full state observations. To instantiate this principle, we present an algorithm called Skew-Fit for learning a maximum-entropy goal distributions. We prove that, under regularity conditions, Skew-Fit converges to a uniform distribution over the set of valid states, even when we do not know this set beforehand. Our experiments show that combining Skew-Fit for learning goal distributions with existing goal-reaching methods outperforms a variety of prior methods on open-sourced visual goal-reaching tasks. Moreover, we demonstrate that \METHOD enables a real-world robot to learn to open a door, entirely from scratch, from pixels, and without any manually-designed reward function.
 
Hierarchical Policy Learning is Sensitive to Goal Space Design2019-06-25   ${\displaystyle \cong }$
Hierarchy in reinforcement learning agents allows for control at multiple time scales yielding improved sample efficiency, the ability to deal with long time horizons and transferability of sub-policies to tasks outside the training distribution. It is often implemented as a master policy providing goals to a sub-policy. Ideally, we would like the goal-spaces to be learned, however, properties of optimal goal spaces still remain unknown and consequently there is no method yet to learn optimal goal spaces. Motivated by this, we systematically analyze how various modifications to the ground-truth goal-space affect learning in hierarchical models with the aim of identifying important properties of optimal goal spaces. Our results show that, while rotation of ground-truth goal spaces and noise had no effect, having additional unnecessary factors significantly impaired learning in hierarchical models.
 
Maximum Entropy Gain Exploration for Long Horizon Multi-goal Reinforcement Learning2020-07-06   ${\displaystyle \cong }$
What goals should a multi-goal reinforcement learning agent pursue during training in long-horizon tasks? When the desired (test time) goal distribution is too distant to offer a useful learning signal, we argue that the agent should not pursue unobtainable goals. Instead, it should set its own intrinsic goals that maximize the entropy of the historical achieved goal distribution. We propose to optimize this objective by having the agent pursue past achieved goals in sparsely explored areas of the goal space, which focuses exploration on the frontier of the achievable goal set. We show that our strategy achieves an order of magnitude better sample efficiency than the prior state of the art on long-horizon multi-goal tasks including maze navigation and block stacking.
 
Curiosity Driven Exploration of Learned Disentangled Goal Spaces2018-11-04   ${\displaystyle \cong }$
Intrinsically motivated goal exploration processes enable agents to autonomously sample goals to explore efficiently complex environments with high-dimensional continuous actions. They have been applied successfully to real world robots to discover repertoires of policies producing a wide diversity of effects. Often these algorithms relied on engineered goal spaces but it was recently shown that one can use deep representation learning algorithms to learn an adequate goal space in simple environments. However, in the case of more complex environments containing multiple objects or distractors, an efficient exploration requires that the structure of the goal space reflects the one of the environment. In this paper we show that using a disentangled goal space leads to better exploration performances than an entangled goal space. We further show that when the representation is disentangled, one can leverage it by sampling goals that maximize learning progress in a modular manner. Finally, we show that the measure of learning progress, used to drive curiosity-driven exploration, can be used simultaneously to discover abstract independently controllable features of the environment.
 
Contextual Imagined Goals for Self-Supervised Robotic Learning2019-10-23   ${\displaystyle \cong }$
While reinforcement learning provides an appealing formalism for learning individual skills, a general-purpose robotic system must be able to master an extensive repertoire of behaviors. Instead of learning a large collection of skills individually, can we instead enable a robot to propose and practice its own behaviors automatically, learning about the affordances and behaviors that it can perform in its environment, such that it can then repurpose this knowledge once a new task is commanded by the user? In this paper, we study this question in the context of self-supervised goal-conditioned reinforcement learning. A central challenge in this learning regime is the problem of goal setting: in order to practice useful skills, the robot must be able to autonomously set goals that are feasible but diverse. When the robot's environment and available objects vary, as they do in most open-world settings, the robot must propose to itself only those goals that it can accomplish in its present setting with the objects that are at hand. Previous work only studies self-supervised goal-conditioned RL in a single-environment setting, where goal proposals come from the robot's past experience or a generative model are sufficient. In more diverse settings, this frequently leads to impossible goals and, as we show experimentally, prevents effective learning. We propose a conditional goal-setting model that aims to propose goals that are feasible from the robot's current state. We demonstrate that this enables self-supervised goal-conditioned off-policy learning with raw image observations in the real world, enabling a robot to manipulate a variety of objects and generalize to new objects that were not seen during training.
 
MapGo: Model-Assisted Policy Optimization for Goal-Oriented Tasks2021-05-13   ${\displaystyle \cong }$
In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem. In this paper, to enhance the diversity of relabeled goals, we develop FGI (Foresight Goal Inference), a new relabeling strategy that relabels the goals by looking into the future with a learned dynamics model. Besides, to improve sample efficiency, we propose to use the dynamics model to generate simulated trajectories for policy training. By integrating these two improvements, we introduce the MapGo framework (Model-Assisted Policy Optimization for Goal-oriented tasks). In our experiments, we first show the effectiveness of the FGI strategy compared with the hindsight one, and then show that the MapGo framework achieves higher sample efficiency when compared to model-free baselines on a set of complicated tasks.
 
Self-supervised Visual Reinforcement Learning with Object-centric Representations2020-11-29   ${\displaystyle \cong }$
Autonomous agents need large repertoires of skills to act reasonably on new tasks that they have not seen before. However, acquiring these skills using only a stream of high-dimensional, unstructured, and unlabeled observations is a tricky challenge for any autonomous agent. Previous methods have used variational autoencoders to encode a scene into a low-dimensional vector that can be used as a goal for an agent to discover new skills. Nevertheless, in compositional/multi-object environments it is difficult to disentangle all the factors of variation into such a fixed-length representation of the whole scene. We propose to use object-centric representations as a modular and structured observation space, which is learned with a compositional generative world model. We show that the structure in the representations in combination with goal-conditioned attention policies helps the autonomous agent to discover and learn useful skills. These skills can be further combined to address compositional tasks like the manipulation of several different objects.
 
Language as a Cognitive Tool to Imagine Goals in Curiosity-Driven Exploration2020-06-12   ${\displaystyle \cong }$
Developmental machine learning studies how artificial agents can model the way children learn open-ended repertoires of skills. Such agents need to create and represent goals, select which ones to pursue and learn to achieve them. Recent approaches have considered goal spaces that were either fixed and hand-defined or learned using generative models of states. This limited agents to sample goals within the distribution of known effects. We argue that the ability to imagine out-of-distribution goals is key to enable creative discoveries and open-ended learning. Children do so by leveraging the compositionality of language as a tool to imagine descriptions of outcomes they never experienced before, targeting them as goals during play. We introduce Imagine, an intrinsically motivated deep reinforcement learning architecture that models this ability. Such imaginative agents, like children, benefit from the guidance of a social peer who provides language descriptions. To take advantage of goal imagination, agents must be able to leverage these descriptions to interpret their imagined out-of-distribution goals. This generalization is made possible by modularity: a decomposition between learned goal-achievement reward function and policy relying on deep sets, gated attention and object-centered representations. We introduce the Playground environment and study how this form of goal imagination improves generalization and exploration over agents lacking this capacity. In addition, we identify the properties of goal imagination that enable these results and study the impacts of modularity and social interactions.
 
Bias-Reduced Hindsight Experience Replay with Virtual Goal Prioritization2020-03-20   ${\displaystyle \cong }$
Hindsight Experience Replay (HER) is a multi-goal reinforcement learning algorithm for sparse reward functions. The algorithm treats every failure as a success for an alternative (virtual) goal that has been achieved in the episode. Virtual goals are randomly selected, irrespective of which are most instructive for the agent. In this paper, we present two improvements over the existing HER algorithm. First, we prioritize virtual goals from which the agent will learn more valuable information. We call this property the instructiveness of the virtual goal and define it by a heuristic measure, which expresses how well the agent will be able to generalize from that virtual goal to actual goals. Secondly, we reduce existing bias in HER by the removal of misleading samples. To test our algorithms, we built two challenging environments with sparse reward functions. Our empirical results in both environments show vast improvement in the final success rate and sample efficiency when compared to the original HER algorithm. A video showing experimental results is available at https://youtu.be/3cZwfK8Nfps .
 
Self-supervised Learning of Distance Functions for Goal-Conditioned Reinforcement Learning2020-06-02   ${\displaystyle \cong }$
Goal-conditioned policies are used in order to break down complex reinforcement learning (RL) problems by using subgoals, which can be defined either in state space or in a latent feature space. This can increase the efficiency of learning by using a curriculum, and also enables simultaneous learning and generalization across goals. A crucial requirement of goal-conditioned policies is to be able to determine whether the goal has been achieved. Having a notion of distance to a goal is thus a crucial component of this approach. However, it is not straightforward to come up with an appropriate distance, and in some tasks, the goal space may not even be known a priori. In this work we learn a distance-to-goal estimate which is computed in terms of the number of actions that would need to be carried out in a self-supervised approach. Our method solves complex tasks without prior domain knowledge in the online setting in three different scenarios in the context of goal-conditioned policies a) the goal space is the same as the state space b) the goal space is given but an appropriate distance is unknown and c) the state space is accessible, but only a subset of the state space represents desired goals, and this subset is known a priori. We also propose a goal-generation mechanism as a secondary contribution.
 
Deep Reinforcement Learning for Complex Manipulation Tasks with Sparse Feedback2020-01-12   ${\displaystyle \cong }$
Learning optimal policies from sparse feedback is a known challenge in reinforcement learning. Hindsight Experience Replay (HER) is a multi-goal reinforcement learning algorithm that comes to solve such tasks. The algorithm treats every failure as a success for an alternative (virtual) goal that has been achieved in the episode and then generalizes from that virtual goal to real goals. HER has known flaws and is limited to relatively simple tasks. In this thesis, we present three algorithms based on the existing HER algorithm that improves its performances. First, we prioritize virtual goals from which the agent will learn more valuable information. We call this property the \textit{instructiveness} of the virtual goal and define it by a heuristic measure, which expresses how well the agent will be able to generalize from that virtual goal to actual goals. Secondly, we designed a filtering process that detects and removes misleading samples that may induce bias throughout the learning process. Lastly, we enable the learning of complex, sequential, tasks using a form of curriculum learning combined with HER. We call this algorithm \textit{Curriculum HER}. To test our algorithms, we built three challenging manipulation environments with sparse reward functions. Each environment has three levels of complexity. Our empirical results show vast improvement in the final success rate and sample efficiency when compared to the original HER algorithm.
 
Unsupervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration2018-10-09   ${\displaystyle \cong }$
Intrinsically motivated goal exploration algorithms enable machines to discover repertoires of policies that produce a diversity of effects in complex environments. These exploration algorithms have been shown to allow real world robots to acquire skills such as tool use in high-dimensional continuous state and action spaces. However, they have so far assumed that self-generated goals are sampled in a specifically engineered feature space, limiting their autonomy. In this work, we propose to use deep representation learning algorithms to learn an adequate goal space. This is a developmental 2-stage approach: first, in a perceptual learning stage, deep learning algorithms use passive raw sensor observations of world changes to learn a corresponding latent space; then goal exploration happens in a second stage by sampling goals in this latent space. We present experiments where a simulated robot arm interacts with an object, and we show that exploration algorithms using such learned representations can match the performance obtained using engineered representations.
 
Unsupervised Visuomotor Control through Distributional Planning Networks2019-02-14   ${\displaystyle \cong }$
While reinforcement learning (RL) has the potential to enable robots to autonomously acquire a wide range of skills, in practice, RL usually requires manual, per-task engineering of reward functions, especially in real world settings where aspects of the environment needed to compute progress are not directly accessible. To enable robots to autonomously learn skills, we instead consider the problem of reinforcement learning without access to rewards. We aim to learn an unsupervised embedding space under which the robot can measure progress towards a goal for itself. Our approach explicitly optimizes for a metric space under which action sequences that reach a particular state are optimal when the goal is the final state reached. This enables learning effective and control-centric representations that lead to more autonomous reinforcement learning algorithms. Our experiments on three simulated environments and two real-world manipulation problems show that our method can learn effective goal metrics from unlabeled interaction, and use the learned goal metrics for autonomous reinforcement learning.
 
Disentangled Skill Embeddings for Reinforcement Learning2019-06-21   ${\displaystyle \cong }$
We propose a novel framework for multi-task reinforcement learning (MTRL). Using a variational inference formulation, we learn policies that generalize across both changing dynamics and goals. The resulting policies are parametrized by shared parameters that allow for transfer between different dynamics and goal conditions, and by task-specific latent-space embeddings that allow for specialization to particular tasks. We show how the latent-spaces enable generalization to unseen dynamics and goals conditions. Additionally, policies equipped with such embeddings serve as a space of skills (or options) for hierarchical reinforcement learning. Since we can change task dynamics and goals independently, we name our framework Disentangled Skill Embeddings (DSE).
 
Where do goals come from? A Generic Approach to Autonomous Goal-System Development2014-10-21   ${\displaystyle \cong }$
Goals express agents' intentions and allow them to organize their behavior based on low-dimensional abstractions of high-dimensional world states. How can agents develop such goals autonomously? This paper proposes a detailed conceptual and computational account to this longstanding problem. We argue to consider goals as high-level abstractions of lower-level intention mechanisms such as rewards and values, and point out that goals need to be considered alongside with a detection of the own actions' effects. We propose Latent Goal Analysis as a computational learning formulation thereof, and show constructively that any reward or value function can by explained by goals and such self-detection as latent mechanisms. We first show that learned goals provide a highly effective dimensionality reduction in a practical reinforcement learning problem. Then, we investigate a developmental scenario in which entirely task-unspecific rewards induced by visual saliency lead to self and goal representations that constitute goal-directed reaching.
 
Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control2018-12-03   ${\displaystyle \cong }$
Deep reinforcement learning (RL) algorithms can learn complex robotic skills from raw sensory inputs, but have yet to achieve the kind of broad generalization and applicability demonstrated by deep learning methods in supervised domains. We present a deep RL method that is practical for real-world robotics tasks, such as robotic manipulation, and generalizes effectively to never-before-seen tasks and objects. In these settings, ground truth reward signals are typically unavailable, and we therefore propose a self-supervised model-based approach, where a predictive model learns to directly predict the future from raw sensory readings, such as camera images. At test time, we explore three distinct goal specification methods: designated pixels, where a user specifies desired object manipulation tasks by selecting particular pixels in an image and corresponding goal positions, goal images, where the desired goal state is specified with an image, and image classifiers, which define spaces of goal states. Our deep predictive models are trained using data collected autonomously and continuously by a robot interacting with hundreds of objects, without human supervision. We demonstrate that visual MPC can generalize to never-before-seen objects---both rigid and deformable---and solve a range of user-defined object manipulation tasks using the same model.