News Blog Paper China
Inductive Relational Matrix Completion2020-07-09   ${\displaystyle \cong }$
Data sparsity and cold-start issues emerge as two major bottlenecks for matrix completion in the context of user-item interaction matrix. We propose a novel method that can fundamentally address these issues. The main idea is to partition users into support users, which have many observed interactions (i.e., non-zero entries in the matrix), and query users, which have few observed entries. For support users, we learn their transductive preference embeddings using matrix factorization over their interactions (a relatively dense sub-matrix). For query users, we devise an inductive relational model that learns to estimate the underlying relations between the two groups of users. This allows us to attentively aggregate the preference embeddings of support users in order to compute inductive embeddings for query users. This new method can address the data sparsity issue by generalizing the behavior patterns of warm-start users to others and thus enables the model to also work effectively for cold-start users with no historical interaction. As theoretical insights, we show that a general version of our model does not sacrifice any expressive power on query users compared with transductive matrix factorization under mild conditions. Also, the generalization error on query users is bounded by the numbers of support users and query users' observed interactions. Moreover, extensive experiments on real-world datasets demonstrate that our model outperforms several state-of-the-art methods by achieving significant improvements on MAE and AUC for warm-start, few-shot (sparsity) and zero-shot (cold-start) recommendation.
Personalized Adaptive Meta Learning for Cold-start User Preference Prediction2020-12-22   ${\displaystyle \cong }$
A common challenge in personalized user preference prediction is the cold-start problem. Due to the lack of user-item interactions, directly learning from the new users' log data causes serious over-fitting problem. Recently, many existing studies regard the cold-start personalized preference prediction as a few-shot learning problem, where each user is the task and recommended items are the classes, and the gradient-based meta learning method (MAML) is leveraged to address this challenge. However, in real-world application, the users are not uniformly distributed (i.e., different users may have different browsing history, recommended items, and user profiles. We define the major users as the users in the groups with large numbers of users sharing similar user information, and other users are the minor users), existing MAML approaches tend to fit the major users and ignore the minor users. To address this cold-start task-overfitting problem, we propose a novel personalized adaptive meta learning approach to consider both the major and the minor users with three key contributions: 1) We are the first to present a personalized adaptive learning rate meta-learning approach to improve the performance of MAML by focusing on both the major and minor users. 2) To provide better personalized learning rates for each user, we introduce a similarity-based method to find similar users as a reference and a tree-based method to store users' features for fast search. 3) To reduce the memory usage, we design a memory agnostic regularizer to further reduce the space complexity to constant while maintain the performance. Experiments on MovieLens, BookCrossing, and real-world production datasets reveal that our method outperforms the state-of-the-art methods dramatically for both the minor and major users.
Offline Meta-level Model-based Reinforcement Learning Approach for Cold-Start Recommendation2020-12-04   ${\displaystyle \cong }$
Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a meta-level model-based reinforcement learning approach for fast user adaptation. In our approach, we learn to infer each user's preference with a user context variable that enables recommendation systems to better adapt to new users with few interactions. To improve adaptation efficiency, we learn to recover the user policy and reward from only a few interactions via an inverse reinforcement learning method to assist a meta-level recommendation agent. Moreover, we model the interaction relationship between the user model and recommendation agent from an information-theoretic perspective. Empirical results show the effectiveness of the proposed method when adapting to new users with only a single interaction sequence. We further provide a theoretical analysis of the recommendation performance bound.
User Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction2018-03-08   ${\displaystyle \cong }$
In human-in-the-loop machine learning, the user provides information beyond that in the training data. Many algorithms and user interfaces have been designed to optimize and facilitate this human--machine interaction; however, fewer studies have addressed the potential defects the designs can cause. Effective interaction often requires exposing the user to the training data or its statistics. The design of the system is then critical, as this can lead to double use of data and overfitting, if the user reinforces noisy patterns in the data. We propose a user modelling methodology, by assuming simple rational behaviour, to correct the problem. We show, in a user study with 48 participants, that the method improves predictive performance in a sparse linear regression sentiment analysis task, where graded user knowledge on feature relevance is elicited. We believe that the key idea of inferring user knowledge with probabilistic user models has general applicability in guarding against overfitting and improving interactive machine learning.
Personalized Federated Learning: A Meta-Learning Approach2020-06-26   ${\displaystyle \cong }$
In Federated Learning, we aim to train models across multiple computing units (users), while users can only communicate with a common central server, without exchanging their data samples. This mechanism exploits the computational power of all users and allows users to obtain a richer model as their models are trained over a larger set of data points. However, this scheme only develops a common output for all the users, and, therefore, it does not adapt the model to each user. This is an important missing feature, especially given the heterogeneity of the underlying data distribution for various users. In this paper, we study a personalized variant of the federated learning in which our goal is to find an initial shared model that current or new users can easily adapt to their local dataset by performing one or a few steps of gradient descent with respect to their own data. This approach keeps all the benefits of the federated learning architecture, and, by structure, leads to a more personalized model for each user. We show this problem can be studied within the Model-Agnostic Meta-Learning (MAML) framework. Inspired by this connection, we study a personalized variant of the well-known Federated Averaging algorithm and evaluate its performance in terms of gradient norm for non-convex loss functions. Further, we characterize how this performance is affected by the closeness of underlying distributions of user data, measured in terms of distribution distances such as Total Variation and 1-Wasserstein metric.
Federated Learning of User Verification Models Without Sharing Embeddings2021-04-18   ${\displaystyle \cong }$
We consider the problem of training User Verification (UV) models in federated setting, where each user has access to the data of only one class and user embeddings cannot be shared with the server or other users. To address this problem, we propose Federated User Verification (FedUV), a framework in which users jointly learn a set of vectors and maximize the correlation of their instance embeddings with a secret linear combination of those vectors. We show that choosing the linear combinations from the codewords of an error-correcting code allows users to collaboratively train the model without revealing their embedding vectors. We present the experimental results for user verification with voice, face, and handwriting data and show that FedUV is on par with existing approaches, while not sharing the embeddings with other users or the server.
Shared Autonomy via Deep Reinforcement Learning2018-05-22   ${\displaystyle \cong }$
In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user's policy given their goal, and the set of possible goals the user might target, which limits their application to real-world scenarios. We propose a deep reinforcement learning framework for model-free shared autonomy that lifts these assumptions. We use human-in-the-loop reinforcement learning with neural network function approximation to learn an end-to-end mapping from environmental observation and user input to agent action values, with task reward as the only form of supervision. This approach poses the challenge of following user commands closely enough to provide the user with real-time action feedback and thereby ensure high-quality user input, but also deviating from the user's actions when they are suboptimal. We balance these two needs by discarding actions whose values fall below some threshold, then selecting the remaining action closest to the user's input. Controlled studies with users (n = 12) and synthetic pilots playing a video game, and a pilot study with users (n = 4) flying a real quadrotor, demonstrate the ability of our algorithm to assist users with real-time control tasks in which the agent cannot directly access the user's private information through observations, but receives a reward signal and user input that both depend on the user's intent. The agent learns to assist the user without access to this private information, implicitly inferring it from the user's input. This paper is a proof of concept that illustrates the potential for deep reinforcement learning to enable flexible and practical assistive systems.
The item selection problem for user cold-start recommendation2020-10-26   ${\displaystyle \cong }$
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could attract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
Dynamic Memory based Attention Network for Sequential Recommendation2021-02-18   ${\displaystyle \cong }$
Sequential recommendation has become increasingly essential in various online services. It aims to model the dynamic preferences of users from their historical interactions and predict their next items. The accumulated user behavior records on real systems could be very long. This rich data brings opportunities to track actual interests of users. Prior efforts mainly focus on making recommendations based on relatively recent behaviors. However, the overall sequential data may not be effectively utilized, as early interactions might affect users' current choices. Also, it has become intolerable to scan the entire behavior sequence when performing inference for each user, since real-world system requires short response time. To bridge the gap, we propose a novel long sequential recommendation model, called Dynamic Memory-based Attention Network (DMAN). It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users. To improve memory fidelity, DMAN dynamically abstracts each user's long-term interest into its own memory blocks by minimizing an auxiliary reconstruction loss. Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation. Empirical results over four benchmark datasets demonstrate the superiority of our model in capturing long-term dependency over various state-of-the-art sequential models.
Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks2019-08-03   ${\displaystyle \cong }$
Modeling sequential interactions between users and items/products is crucial in domains such as e-commerce, social networking, and education. Representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user/item can be embedded in a Euclidean space and its evolution can be modeled by an embedding trajectory in this space. However, existing dynamic embedding methods generate embeddings only when users take actions and do not explicitly model the future trajectory of the user/item in the embedding space. Here we propose JODIE, a coupled recurrent neural network model that learns the embedding trajectories of users and items. JODIE employs two recurrent neural networks to update the embedding of a user and an item at every interaction. Crucially, JODIE also models the future embedding trajectory of a user/item. To this end, it introduces a novel projection operator that learns to estimate the embedding of the user at any time in the future. These estimated embeddings are then used to predict future user-item interactions. To make the method scalable, we develop a t-Batch algorithm that creates time-consistent batches and leads to 9x faster training. We conduct six experiments to validate JODIE on two prediction tasks---future interaction prediction and state change prediction---using four real-world datasets. We show that JODIE outperforms six state-of-the-art algorithms in these tasks by at least 20% in predicting future interactions and 12% in state change prediction.
Federated Unbiased Learning to Rank2021-05-10   ${\displaystyle \cong }$
Unbiased Learning to Rank (ULTR) studies the problem of learning a ranking function based on biased user interactions. In this framework, ULTR algorithms have to rely on a large amount of user data that are collected, stored, and aggregated by central servers. In this paper, we consider an on-device search setting, where users search against their personal corpora on their local devices, and the goal is to learn a ranking function from biased user interactions. Due to privacy constraints, users' queries, personal documents, results lists, and raw interaction data will not leave their devices, and ULTR has to be carried out via Federated Learning (FL). Directly applying existing ULTR algorithms on users' devices could suffer from insufficient training data due to the limited amount of local interactions. To address this problem, we propose the FedIPS algorithm, which learns from user interactions on-device under the coordination of a central server and uses click propensities to remove the position bias in user interactions. Our evaluation of FedIPS on the Yahoo and Istella datasets shows that FedIPS is robust over a range of position biases.
CnGAN: Generative Adversarial Networks for Cross-network user preference generation for non-overlapped users2020-08-25   ${\displaystyle \cong }$
A major drawback of cross-network recommender solutions is that they can only be applied to users that are overlapped across networks. Thus, the non-overlapped users, which form the majority of users are ignored. As a solution, we propose CnGAN, a novel multi-task learning based, encoder-GAN-recommender architecture. The proposed model synthetically generates source network user preferences for non-overlapped users by learning the mapping from target to source network preference manifolds. The resultant user preferences are used in a Siamese network based neural recommender architecture. Furthermore, we propose a novel user based pairwise loss function for recommendations using implicit interactions to better guide the generation process in the multi-task learning environment.We illustrate our solution by generating user preferences on the Twitter source network for recommendations on the YouTube target network. Extensive experiments show that the generated preferences can be used to improve recommendations for non-overlapped users. The resultant recommendations achieve superior performance compared to the state-of-the-art cross-network recommender solutions in terms of accuracy, novelty and diversity.
MRIF: Multi-resolution Interest Fusion for Recommendation2020-07-07   ${\displaystyle \cong }$
The main task of personalized recommendation is capturing users' interests based on their historical behaviors. Most of recent advances in recommender systems mainly focus on modeling users' preferences accurately using deep learning based approaches. There are two important properties of users' interests, one is that users' interests are dynamic and evolve over time, the other is that users' interests have different resolutions, or temporal-ranges to be precise, such as long-term and short-term preferences. Existing approaches either use Recurrent Neural Networks (RNNs) to address the drifts in users' interests without considering different temporal-ranges, or design two different networks to model long-term and short-term preferences separately. This paper presents a multi-resolution interest fusion model (MRIF) that takes both properties of users' interests into consideration. The proposed model is capable to capture the dynamic changes in users' interests at different temporal-ranges, and provides an effective way to combine a group of multi-resolution user interests to make predictions. Experiments show that our method outperforms state-of-the-art recommendation methods consistently.
Latent Contextual Bandits and their Application to Personalized Recommendations for New Users2016-04-22   ${\displaystyle \cong }$
Personalized recommendations for new users, also known as the cold-start problem, can be formulated as a contextual bandit problem. Existing contextual bandit algorithms generally rely on features alone to capture user variability. Such methods are inefficient in learning new users' interests. In this paper we propose Latent Contextual Bandits. We consider both the benefit of leveraging a set of learned latent user classes for new users, and how we can learn such latent classes from prior users. We show that our approach achieves a better regret bound than existing algorithms. We also demonstrate the benefit of our approach using a large real world dataset and a preliminary user study.
Learning Models for Shared Control of Human-Machine Systems with Unknown Dynamics2018-08-24   ${\displaystyle \cong }$
We present a novel approach to shared control of human-machine systems. Our method assumes no a priori knowledge of the system dynamics. Instead, we learn both the dynamics and information about the user's interaction from observation through the use of the Koopman operator. Using the learned model, we define an optimization problem to compute the optimal policy for a given task, and compare the user input to the optimal input. We demonstrate the efficacy of our approach with a user study. We also analyze the individual nature of the learned models by comparing the effectiveness of our approach when the demonstration data comes from a user's own interactions, from the interactions of a group of users and from a domain expert. Positive results include statistically significant improvements on task metrics when comparing a user-only control paradigm with our shared control paradigm. Surprising results include findings that suggest that individualizing the model based on a user's own data does not effect the ability to learn a useful dynamic system. We explore this tension as it relates to developing human-in-the-loop systems further in the discussion.
Influence Function based Data Poisoning Attacks to Top-N Recommender Systems2020-05-31   ${\displaystyle \cong }$
Recommender system is an essential component of web services to engage users. Popular recommender systems model user preferences and item properties using a large amount of crowdsourced user-item interaction data, e.g., rating scores; then top-$N$ items that match the best with a user's preference are recommended to the user. In this work, we show that an attacker can launch a data poisoning attack to a recommender system to make recommendations as the attacker desires via injecting fake users with carefully crafted user-item interaction data. Specifically, an attacker can trick a recommender system to recommend a target item to as many normal users as possible. We focus on matrix factorization based recommender systems because they have been widely deployed in industry. Given the number of fake users the attacker can inject, we formulate the crafting of rating scores for the fake users as an optimization problem. However, this optimization problem is challenging to solve as it is a non-convex integer programming problem. To address the challenge, we develop several techniques to approximately solve the optimization problem. For instance, we leverage influence function to select a subset of normal users who are influential to the recommendations and solve our formulated optimization problem based on these influential users. Our results show that our attacks are effective and outperform existing methods.
Learning User's confidence for active learning2021-04-15   ${\displaystyle \cong }$
In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing the effect of resolution is such a learning task. Experiments on two QuickBird images of different resolutions (with and without pansharpening) and considering committees of users prove the efficiency of the filtering scheme proposed, which maximizes the number of useful queries with respect to traditional active learning.
Micro-entries: Encouraging Deeper Evaluation of Mental Models Over Time for Interactive Data Systems2020-09-02   ${\displaystyle \cong }$
Many interactive data systems combine visual representations of data with embedded algorithmic support for automation and data exploration. To effectively support transparent and explainable data systems, it is important for researchers and designers to know how users understand the system. We discuss the evaluation of users' mental models of system logic. Mental models are challenging to capture and analyze. While common evaluation methods aim to approximate the user's final mental model after a period of system usage, user understanding continuously evolves as users interact with a system over time. In this paper, we review many common mental model measurement techniques, discuss tradeoffs, and recommend methods for deeper, more meaningful evaluation of mental models when using interactive data analysis and visualization systems. We present guidelines for evaluating mental models over time that reveal the evolution of specific model updates and how they may map to the particular use of interface features and data queries. By asking users to describe what they know and how they know it, researchers can collect structured, time-ordered insight into a user's conceptualization process while also helping guide users to their own discoveries.
Understanding the Predictive Power of Computational Mechanics and Echo State Networks in Social Media2013-08-23   ${\displaystyle \cong }$
There is a large amount of interest in understanding users of social media in order to predict their behavior in this space. Despite this interest, user predictability in social media is not well-understood. To examine this question, we consider a network of fifteen thousand users on Twitter over a seven week period. We apply two contrasting modeling paradigms: computational mechanics and echo state networks. Both methods attempt to model the behavior of users on the basis of their past behavior. We demonstrate that the behavior of users on Twitter can be well-modeled as processes with self-feedback. We find that the two modeling approaches perform very similarly for most users, but that they differ in performance on a small subset of the users. By exploring the properties of these performance-differentiated users, we highlight the challenges faced in applying predictive models to dynamic social data.
Scalable Recommendation with Poisson Factorization2014-05-20   ${\displaystyle \cong }$
We develop a Bayesian Poisson matrix factorization model for forming recommendations from sparse user behavior data. These data are large user/item matrices where each user has provided feedback on only a small subset of items, either explicitly (e.g., through star ratings) or implicitly (e.g., through views or purchases). In contrast to traditional matrix factorization approaches, Poisson factorization implicitly models each user's limited attention to consume items. Moreover, because of the mathematical form of the Poisson likelihood, the model needs only to explicitly consider the observed entries in the matrix, leading to both scalable computation and good predictive performance. We develop a variational inference algorithm for approximate posterior inference that scales up to massive data sets. This is an efficient algorithm that iterates over the observed entries and adjusts an approximate posterior over the user/item representations. We apply our method to large real-world user data containing users rating movies, users listening to songs, and users reading scientific papers. In all these settings, Bayesian Poisson factorization outperforms state-of-the-art matrix factorization methods.