News Blog Paper China
Sequential Recommender Systems: Challenges, Progress and Prospects2019-12-28   ${\displaystyle \cong }$
The emerging topic of sequential recommender systems has attracted increasing attention in recent years.Different from the conventional recommender systems including collaborative filtering and content-based filtering, SRSs try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users preferences and item popularity over time. SRSs involve the above aspects for more precise characterization of user contexts, intent and goals, and item consumption trend, leading to more accurate, customized and dynamic recommendations.In this paper, we provide a systematic review on SRSs.We first present the characteristics of SRSs, and then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic.Finally, we discuss the important research directions in this vibrant area.
Dual-embedding based Neural Collaborative Filtering for Recommender Systems2021-02-04   ${\displaystyle \cong }$
Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. \textit{embedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that it's insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.
A Latent Source Model for Online Collaborative Filtering2014-10-31   ${\displaystyle \cong }$
Despite the prevalence of collaborative filtering in recommendation systems, there has been little theoretical development on why and how well it works, especially in the "online" setting, where items are recommended to users over time. We address this theoretical gap by introducing a model for online recommendation systems, cast item recommendation under the model as a learning problem, and analyze the performance of a cosine-similarity collaborative filtering method. In our model, each of $n$ users either likes or dislikes each of $m$ items. We assume there to be $k$ types of users, and all the users of a given type share a common string of probabilities determining the chance of liking each item. At each time step, we recommend an item to each user, where a key distinction from related bandit literature is that once a user consumes an item (e.g., watches a movie), then that item cannot be recommended to the same user again. The goal is to maximize the number of likable items recommended to users over time. Our main result establishes that after nearly $\log(km)$ initial learning time steps, a simple collaborative filtering algorithm achieves essentially optimal performance without knowing $k$. The algorithm has an exploitation step that uses cosine similarity and two types of exploration steps, one to explore the space of items (standard in the literature) and the other to explore similarity between users (novel to this work).
Collaborative Filtering with Information-Rich and Information-Sparse Entities2014-03-06   ${\displaystyle \cong }$
In this paper, we consider a popular model for collaborative filtering in recommender systems where some users of a website rate some items, such as movies, and the goal is to recover the ratings of some or all of the unrated items of each user. In particular, we consider both the clustering model, where only users (or items) are clustered, and the co-clustering model, where both users and items are clustered, and further, we assume that some users rate many items (information-rich users) and some users rate only a few items (information-sparse users). When users (or items) are clustered, our algorithm can recover the rating matrix with $?(MK \log M)$ noisy entries while $MK$ entries are necessary, where $K$ is the number of clusters and $M$ is the number of items. In the case of co-clustering, we prove that $K^2$ entries are necessary for recovering the rating matrix, and our algorithm achieves this lower bound within a logarithmic factor when $K$ is sufficiently large. We compare our algorithms with a well-known algorithms called alternating minimization (AM), and a similarity score-based algorithm known as the popularity-among-friends (PAF) algorithm by applying all three to the MovieLens and Netflix data sets. Our co-clustering algorithm and AM have similar overall error rates when recovering the rating matrix, both of which are lower than the error rate under PAF. But more importantly, the error rate of our co-clustering algorithm is significantly lower than AM and PAF in the scenarios of interest in recommender systems: when recommending a few items to each user or when recommending items to users who only rated a few items (these users are the majority of the total user population). The performance difference increases even more when noise is added to the datasets.
CoBaR: Confidence-Based Recommender2018-08-21   ${\displaystyle \cong }$
Neighborhood-based collaborative filtering algorithms usually adopt a fixed neighborhood size for every user or item, although groups of users or items may have different lengths depending on users' preferences. In this paper, we propose an extension to a non-personalized recommender based on confidence intervals and hierarchical clustering to generate groups of users with optimal sizes. The evaluation shows that the proposed technique outperformed the traditional recommender algorithms in four publicly available datasets.
Addressing the Item Cold-start Problem by Attribute-driven Active Learning2018-05-23   ${\displaystyle \cong }$
In recommender systems, cold-start issues are situations where no previous events, e.g. ratings, are known for certain users or items. In this paper, we focus on the item cold-start problem. Both content information (e.g. item attributes) and initial user ratings are valuable for seizing users' preferences on a new item. However, previous methods for the item cold-start problem either 1) incorporate content information into collaborative filtering to perform hybrid recommendation, or 2) actively select users to rate the new item without considering content information and then do collaborative filtering. In this paper, we propose a novel recommendation scheme for the item cold-start problem by leverage both active learning and items' attribute information. Specifically, we design useful user selection criteria based on items' attributes and users' rating history, and combine the criteria in an optimization framework for selecting users. By exploiting the feedback ratings, users' previous ratings and items' attributes, we then generate accurate rating predictions for the other unselected users. Experimental results on two real-world datasets show the superiority of our proposed method over traditional methods.
A data-driven personalized smart lighting recommender system2021-04-05   ${\displaystyle \cong }$
Recommender systems attempts to identify and recommend the most preferable item (product-service) to an individual user. These systems predict user interest in items based on related items, users, and the interactions between items and users. We aim to build an auto-routine and color scheme recommender system that leverages a wealth of historical data and machine learning methods. We introduce an unsupervised method to recommend a routine for lighting. Moreover, by analyzing users' daily logs, geographical location, temporal and usage information we understand user preference and predict their preferred color for lights. To do so, we cluster users based on their geographical information and usage distribution. We then build and train a predictive model within each cluster and aggregate the results. Results indicate that models based on similar users increases the prediction accuracy, with and without prior knowledge about user preferences.
Graph Learning based Recommender Systems: A Review2021-05-13   ${\displaystyle \cong }$
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
Dynamic Graph Collaborative Filtering2021-01-07   ${\displaystyle \cong }$
Dynamic recommendation is essential for modern recommender systems to provide real-time predictions based on sequential data. In real-world scenarios, the popularity of items and interests of users change over time. Based on this assumption, many previous works focus on interaction sequences and learn evolutionary embeddings of users and items. However, we argue that sequence-based models are not able to capture collaborative information among users and items directly. Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations of both items and users at the same time. We propose three update mechanisms: zero-order 'inheritance', first-order 'propagation', and second-order 'aggregation', to represent the impact on a user or item when a new interaction occurs. Based on them, we update related user and item embeddings simultaneously when interactions occur in turn, and then use the latest embeddings to make recommendations. Extensive experiments conducted on three public datasets show that DGCF significantly outperforms the state-of-the-art dynamic recommendation methods up to 30. Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation2019-07-31   ${\displaystyle \cong }$
This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.
Deep Coevolutionary Network: Embedding User and Item Features for Recommendation2017-02-28   ${\displaystyle \cong }$
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. The compatibility of user and item's feature further influence the future interaction between users and items. Recently, point process based models have been proposed in the literature aiming to capture the temporally evolving nature of these latent features. However, these models often make strong parametric assumptions about the evolution process of the user and item latent features, which may not reflect the reality, and has limited power in expressing the complex and nonlinear dynamics underlying these processes. To address these limitations, we propose a novel deep coevolutionary network model (DeepCoevolve), for learning user and item features based on their interaction graph. DeepCoevolve use recurrent neural network (RNN) over evolving networks to define the intensity function in point processes, which allows the model to capture complex mutual influence between users and items, and the feature evolution over time. We also develop an efficient procedure for training the model parameters, and show that the learned models lead to significant improvements in recommendation and activity prediction compared to previous state-of-the-arts parametric models.
Scalable Realistic Recommendation Datasets through Fractal Expansions2019-02-20   ${\displaystyle \cong }$
Recommender System research suffers currently from a disconnect between the size of academic data sets and the scale of industrial production systems. In order to bridge that gap we propose to generate more massive user/item interaction data sets by expanding pre-existing public data sets. User/item incidence matrices record interactions between users and items on a given platform as a large sparse matrix whose rows correspond to users and whose columns correspond to items. Our technique expands such matrices to larger numbers of rows (users), columns (items) and non zero values (interactions) while preserving key higher order statistical properties. We adapt the Kronecker Graph Theory to user/item incidence matrices and show that the corresponding fractal expansions preserve the fat-tailed distributions of user engagements, item popularity and singular value spectra of user/item interaction matrices. Preserving such properties is key to building large realistic synthetic data sets which in turn can be employed reliably to benchmark Recommender Systems and the systems employed to train them. We provide algorithms to produce such expansions and apply them to the MovieLens 20 million data set comprising 20 million ratings of 27K movies by 138K users. The resulting expanded data set has 10 billion ratings, 864K items and 2 million users in its smaller version and can be scaled up or down. A larger version features 655 billion ratings, 7 million items and 17 million users.
Measuring Recommender System Effects with Simulated Users2021-01-12   ${\displaystyle \cong }$
Imagine a food recommender system -- how would we check if it is \emph{causing} and fostering unhealthy eating habits or merely reflecting users' interests? How much of a user's experience over time with a recommender is caused by the recommender system's choices and biases, and how much is based on the user's preferences and biases? Popularity bias and filter bubbles are two of the most well-studied recommender system biases, but most of the prior research has focused on understanding the system behavior in a single recommendation step. How do these biases interplay with user behavior, and what types of user experiences are created from repeated interactions? In this work, we offer a simulation framework for measuring the impact of a recommender system under different types of user behavior. Using this simulation framework, we can (a) isolate the effect of the recommender system from the user preferences, and (b) examine how the system performs not just on average for an "average user" but also the extreme experiences under atypical user behavior. As part of the simulation framework, we propose a set of evaluation metrics over the simulations to understand the recommender system's behavior. Finally, we present two empirical case studies -- one on traditional collaborative filtering in MovieLens and one on a large-scale production recommender system -- to understand how popularity bias manifests over time.
Multi-Perspective Neural Architecture for Recommendation System2018-07-12   ${\displaystyle \cong }$
Currently, there starts a research trend to leverage neural architecture for recommendation systems. Though several deep recommender models are proposed, most methods are too simple to characterize users' complex preference. In this paper, for a fine-grain analysis, users' ratings are explained from multiple perspectives, based on which, we propose our neural architecture. Specifically, our model employs several sequential stages to encode the user and item into hidden representations. In one stage, the user and item are represented from multiple perspectives and in each perspective, the representations of user and item put attentions to each other. Last, we metric the output representations of final stage to approach the users' rating. Extensive experiments demonstrate that our method achieves substantial improvements against baselines.
Collaborative Filtering with A Synthetic Feedback Loop2019-10-20   ${\displaystyle \cong }$
We propose a novel learning framework for recommendation systems, assisting collaborative filtering with a synthetic feedback loop. The proposed framework consists of a "recommender" and a "virtual user." The recommender is formulizd as a collaborative-filtering method, recommending items according to observed user behavior. The virtual user estimates rewards from the recommended items and generates the influence of the rewards on observed user behavior. The recommender connected with the virtual user constructs a closed loop, that recommends users with items and imitates the unobserved feedback of the users to the recommended items. The synthetic feedback is used to augment observed user behavior and improve recommendation results. Such a model can be interpreted as the inverse reinforcement learning, which can be learned effectively via rollout (simulation). Experimental results show that the proposed framework is able to boost the performance of existing collaborative filtering methods on multiple datasets.
Presentation a Trust Walker for rating prediction in Recommender System with Biased Random Walk: Effects of H-index Centrality, Similarity in Items and Friends2020-09-10   ${\displaystyle \cong }$
The use of recommender systems has increased dramatically to assist online social network users in the decision-making process and selecting appropriate items. On the other hand, due to many different items, users cannot score a wide range of them, and usually, there is a scattering problem for the matrix created for users. To solve the problem, the trust-based recommender systems are applied to predict the score of the desired item for the user. Various criteria have been considered to define trust, and the degree of trust between users is usually calculated based on these criteria. In this regard, it is impossible to obtain the degree of trust for all users because of the large number of them in social networks. Also, for this problem, researchers use different modes of the Random Walk algorithm to randomly visit some users, study their behavior, and gain the degree of trust between them. In the present study, a trust-based recommender system is presented that predicts the score of items that the target user has not rated, and if the item is not found, it offers the user the items dependent on that item that are also part of the user's interests. In a trusted network, by weighting the edges between the nodes, the degree of trust is determined, and a TrustWalker is developed, which uses the Biased Random Walk (BRW) algorithm to move between the nodes. The weight of the edges is effective in the selection of random steps. The implementation and evaluation of the present research method have been carried out on three datasets named Epinions, Flixster, and FilmTrust; the results reveal the high efficiency of the proposed method.
Influence Function based Data Poisoning Attacks to Top-N Recommender Systems2020-05-31   ${\displaystyle \cong }$
Recommender system is an essential component of web services to engage users. Popular recommender systems model user preferences and item properties using a large amount of crowdsourced user-item interaction data, e.g., rating scores; then top-$N$ items that match the best with a user's preference are recommended to the user. In this work, we show that an attacker can launch a data poisoning attack to a recommender system to make recommendations as the attacker desires via injecting fake users with carefully crafted user-item interaction data. Specifically, an attacker can trick a recommender system to recommend a target item to as many normal users as possible. We focus on matrix factorization based recommender systems because they have been widely deployed in industry. Given the number of fake users the attacker can inject, we formulate the crafting of rating scores for the fake users as an optimization problem. However, this optimization problem is challenging to solve as it is a non-convex integer programming problem. To address the challenge, we develop several techniques to approximately solve the optimization problem. For instance, we leverage influence function to select a subset of normal users who are influential to the recommendations and solve our formulated optimization problem based on these influential users. Our results show that our attacks are effective and outperform existing methods.
A Markov Decision Process Analysis of the Cold Start Problem in Bayesian Information Filtering2014-10-28   ${\displaystyle \cong }$
We consider the information filtering problem, in which we face a stream of items, and must decide which ones to forward to a user to maximize the number of relevant items shown, minus a penalty for each irrelevant item shown. Forwarding decisions are made separately in a personalized way for each user. We focus on the cold-start setting for this problem, in which we have limited historical data on the user's preferences, and must rely on feedback from forwarded articles to learn which the fraction of items relevant to the user in each of several item categories. Performing well in this setting requires trading exploration vs. exploitation, forwarding items that are likely to be irrelevant, to allow learning that will improve later performance. In a Bayesian setting, and using Markov decision processes, we show how the Bayes-optimal forwarding algorithm can be computed efficiently when the user will examine each forwarded article, and how an upper bound on the Bayes-optimal procedure and a heuristic index policy can be obtained for the setting when the user will examine only a limited number of forwarded items. We present results from simulation experiments using parameters estimated using historical data from arXiv.org.
Freudian and Newtonian Recurrent Cell for Sequential Recommendation2021-02-11   ${\displaystyle \cong }$
A sequential recommender system aims to recommend attractive items to users based on behaviour patterns. The predominant sequential recommendation models are based on natural language processing models, such as the gated recurrent unit, that embed items in some defined space and grasp the user's long-term and short-term preferences based on the item embeddings. However, these approaches lack fundamental insight into how such models are related to the user's inherent decision-making process. To provide this insight, we propose a novel recurrent cell, namely FaNC, from Freudian and Newtonian perspectives. FaNC divides the user's state into conscious and unconscious states, and the user's decision process is modelled by Freud's two principles: the pleasure principle and reality principle. To model the pleasure principle, i.e., free-floating user's instinct, we place the user's unconscious state and item embeddings in the same latent space and subject them to Newton's law of gravitation. Moreover, to recommend items to users, we model the reality principle, i.e., balancing the conscious and unconscious states, via a gating function. Based on extensive experiments on various benchmark datasets, this paper provides insight into the characteristics of the proposed model. FaNC initiates a new direction of sequential recommendations at the convergence of psychoanalysis and recommender systems.
A Hybrid Latent Variable Neural Network Model for Item Recommendation2014-06-09   ${\displaystyle \cong }$
Collaborative filtering is used to recommend items to a user without requiring a knowledge of the item itself and tends to outperform other techniques. However, collaborative filtering suffers from the cold-start problem, which occurs when an item has not yet been rated or a user has not rated any items. Incorporating additional information, such as item or user descriptions, into collaborative filtering can address the cold-start problem. In this paper, we present a neural network model with latent input variables (latent neural network or LNN) as a hybrid collaborative filtering technique that addresses the cold-start problem. LNN outperforms a broad selection of content-based filters (which make recommendations based on item descriptions) and other hybrid approaches while maintaining the accuracy of state-of-the-art collaborative filtering techniques.